

# INITIAL STUDY OF MODIFIED SONIC BURNER FOR POWERPLANT FIRE TESTING AND INNOVATIVE MAPPING TECHNIQUES

2018-10-30

# PRESENTED BY: DR. MARY KELLY (RESONATE) AND SIMON HIND (NATIONAL RESEARCH COUNCIL CANADA)











#### **BATTLE OF THE BURNERS**











# Premise – why are we doing this study? Presentation overview

#### **Premise**

Comparison of existing and new Burners carried out to add to the body of knowledge and increase consistency between labs for powerplant/systems testing aiding in providing direction for future trials.

#### **Presentation overview**

- Trial summary
- Equipment used
- Calibration comparison of Carlin and existing Sonic configuration
- Modifications to Sonic
- Calibration comparison of Carlin and Newly modified Sonic Configuration
- Novel mapping techniques to compare the burner flames
- Conclusions and future work









#### **Trial Summary**

| Date      | Trial                               |
|-----------|-------------------------------------|
| 16-Jul-18 | T1 - Carlin 1                       |
| 16-Jul-18 | T2 - Sonic FAA 1                    |
| 16-Jul-18 | T3 - Sonic FAA 2                    |
| 16-Jul-18 | T4 - Sonic FAA 3                    |
| 16-Jul-18 | T5 - Sonic FAA 4 Temp Map           |
| 16-Jul-18 | T6 - Sonic FAA 5 Temp Map           |
| 16-Jul-18 | T7 - Sonic FAA 6                    |
|           |                                     |
| 17-Jul-18 | T8 - Carlin 2                       |
| 17-Jul-18 | T9 - Carlin Panel 3 pre burn        |
| 17-Jul-18 | T10 - Carlin Panel 4 post burn      |
| 17-Jul-18 | T11 - Carlin 5                      |
| 17-Jul-18 | T12 - Carlin 6                      |
| 17-Jul-18 | T13 - Carlin 7                      |
|           |                                     |
| 18-Jul-18 | T14 - Carlin 8                      |
| 18-Jul-18 | T15 - Sonic Mod 1                   |
| 18-Jul-18 | T16 - Sonic Mod 2                   |
| 18-Jul-18 | T17 - Sonic Mod 3 Temp & BTU/hr Map |

| 19-Jul-18                                                                               | T18 - Sonic Mod 4 Temp Map                                                                                                                                |
|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 19-Jul-18                                                                               | T19 - Sonic Mod 5 pre burn                                                                                                                                |
| 19-Jul-18                                                                               | T20 - Sonic Mod 6 post burn                                                                                                                               |
| 19-Jul-18                                                                               | T21 - Sonic Mod 7 Temp Map                                                                                                                                |
| 19-Jul-18                                                                               | T22 - Sonic Mod 8 pre burn                                                                                                                                |
| 19-Jul-18                                                                               | T23 - Sonic Mod 9 post burn                                                                                                                               |
| 19-Jul-18                                                                               | T24 - Sonic Mod 10 Temp Map                                                                                                                               |
| 19-Jul-18                                                                               | T25 - Sonic Mod 11                                                                                                                                        |
| 19-Jul-18                                                                               | T26 - Sonic Mod 12                                                                                                                                        |
| 19-Jul-18                                                                               | T27 - Sonic Mod 13 pre BTU/hr Map                                                                                                                         |
| 19-Jul-18                                                                               | T28 - Sonic Mod 14 post BTU/hr Map                                                                                                                        |
|                                                                                         |                                                                                                                                                           |
|                                                                                         |                                                                                                                                                           |
| 20-Jul-18                                                                               | T29 - Sonic Mod 15 Temp Map                                                                                                                               |
| 20-Jul-18<br>20-Jul-18                                                                  | T29 - Sonic Mod 15 Temp Map<br>T30 - Sonic Mod 16 burn                                                                                                    |
|                                                                                         |                                                                                                                                                           |
| 20-Jul-18                                                                               | T30 - Sonic Mod 16 burn                                                                                                                                   |
| 20-Jul-18<br>20-Jul-18                                                                  | T30 - Sonic Mod 16 burn<br>T31 - Sonic FAA 7 Temp Map                                                                                                     |
| 20-Jul-18<br>20-Jul-18<br>20-Jul-18                                                     | T30 - Sonic Mod 16 burn<br>T31 - Sonic FAA 7 Temp Map<br>T32 - Sonic FAA 8                                                                                |
| 20-Jul-18<br>20-Jul-18<br>20-Jul-18<br>20-Jul-18                                        | T30 - Sonic Mod 16 burn T31 - Sonic FAA 7 Temp Map T32 - Sonic FAA 8 T33 - Sonic FAA 9                                                                    |
| 20-Jul-18<br>20-Jul-18<br>20-Jul-18<br>20-Jul-18                                        | T30 - Sonic Mod 16 burn T31 - Sonic FAA 7 Temp Map T32 - Sonic FAA 8 T33 - Sonic FAA 9                                                                    |
| 20-Jul-18<br>20-Jul-18<br>20-Jul-18<br>20-Jul-18<br>20-Jul-18                           | T30 - Sonic Mod 16 burn T31 - Sonic FAA 7 Temp Map T32 - Sonic FAA 8 T33 - Sonic FAA 9 T34 - Sonic FAA 10                                                 |
| 20-Jul-18<br>20-Jul-18<br>20-Jul-18<br>20-Jul-18<br>20-Jul-18                           | T30 - Sonic Mod 16 burn T31 - Sonic FAA 7 Temp Map T32 - Sonic FAA 8 T33 - Sonic FAA 9 T34 - Sonic FAA 10 T35 - Carlin 9                                  |
| 20-Jul-18<br>20-Jul-18<br>20-Jul-18<br>20-Jul-18<br>20-Jul-18<br>21-Jul-18              | T30 - Sonic Mod 16 burn T31 - Sonic FAA 7 Temp Map T32 - Sonic FAA 8 T33 - Sonic FAA 9 T34 - Sonic FAA 10  T35 - Carlin 9 T36 - Carlin 10                 |
| 20-Jul-18<br>20-Jul-18<br>20-Jul-18<br>20-Jul-18<br>20-Jul-18<br>21-Jul-18<br>21-Jul-18 | T30 - Sonic Mod 16 burn T31 - Sonic FAA 7 Temp Map T32 - Sonic FAA 8 T33 - Sonic FAA 9 T34 - Sonic FAA 10  T35 - Carlin 9 T36 - Carlin 10 T37 - Carlin 11 |

More than 40 trials conducted over 6 days of testing:

- Carlin x 14
- Sonic FAA Config. x 10
- Sonic Mod. Config. x 16

#### Including:

- X5 2D temperature map with 11 TC rake
- X2 2D HD temperature map with 11 TC rake
- X3 2D HD temperature map with 21 TC rakes and impingement surface
- X4 BTU/hr maps
- X4 burnthrough tests











## **EQUIPMENT AND SETUP**









#### Resonate Testing Ltd-Fire Test Facilities





#### **SERVICES & CAPABILITIES**

#### **Automated Burner Control**

- The Burner is mounted on a carriage that travels along a 6m rail track. The Carriage is controlled from control room.
- The Track has four separate zones
  - 1. Warm up Area.
  - 2. Heat flux Calibration.
  - 3. Flame Temperature Calibration .
  - 4. Specimen Test area.
- The Test Technician controls the movement burner between stations.
- The data acquisitions is via National Instruments LabVIEW, giving real time display of heat flux and temperature distribution during calibration stages.
- The burner can be positioned at any angle between horizontal and vertical angles as required.





### TC Rake – Temperature Calibration

#### Brand New TC's Used







NOTES

- 1 The diameter of the thermocouple wire shall be between 0,6 mm and 1 mm
- If a metal sheath is used, the maximum diameter shall not exceed 3 mm.
   The thermocouple shall be unshielded and non-aspirated.

Figure B.1 — Details of thermocouple

- 7 type K thermocouples
- 1-inch apart (25mm)
- 1-inch above centreline
- 4-inches away from cone
- 3mm external sheath
- 4-6mm exposed tip
- 24 AWG (0.5mm) wire





Compliant with BS EN 60584.1 Pt4 Class 1

375°C to 1000°C  $\pm 0.004$ .  $|t| \rightarrow \pm 40$ °C











## Copper Tube – Heat flux Calibration





RTD's for temp measurement offer a better solution than Glass bulb thermometers if installed correctly.

Figure B.4 — Overall view of the mounting of the standard heat flux density measuring tube

- 500 lb/hr, 1 US gallon, 3.8 litre per minute flow water
- 50-71°F input temp,
- minimum of 9°F temperature increase required













# Copper Tube – Heat flux Calibration The rational approach.....

This makes sense

- Engineering Report 3A
  - A three minute warmup period should be allowed to obtain stable conditions before temperature measurements are recorded. Note: the three minutes should be conducted away from the heat transfer tube to prevent buildup of carbon.
- ISO 2685
  - Allow a 3 min warm-up period in order to obtain stable conditions before recording the temperature measurements
  - NOTE When warming up the flame, do not expose the heat-transfer tube to the flame; this minimizes carbon build-up on the tube.

Heat flow Average was calculated over the 3mins beginning once 4500BTU/hr was reached

or

If 4500BTU/hr was not reached 1mins warm up was allowed and 3 mins of data recorded after this









## Burners – Carlin and Sonic – Side by Side











#### Carlin 200 CRD

#### Engineering report 3A





Acceptable Modified Burners:

CARLIN 200 CRD, manufactured by the Carlin Company, 912 Silas Deane Highway, Wethersfield, Connecticut 06109, shown in figures 5 and 6, was modified in the following manner to produce a diffused 6-inch (vertical) by 11-inch (horizontal) sized flame with homogeneous temperature gradiant. Note: Carlin 200 CRD AS 1055 incorporates these following modifications and may be purchased directly.

- An 80 fuel nozzle rated at 2.25 gal/hr. and pressure adjusted to deliver 2.04 gal/hr. at 97 psig was installed.
- 2. The retention and throttle rings plus the support and forward extension were removed.
- 3. A flat-plate disc, approximately 4 inches in diameter and randomly punched with ten 1/2-inch holes, was installed 4 inches aft of the fuel nozzle tip. This provided support and centering of the oil delivery tube.













## Sonic – FAA (Existing)

FAA FIRE TEST HANDBOOK - Chapter 7 configuration Supplier by Marlin Engineering



#### Fuel Nozzle

FAATC data from presentations (as late as 2017):

- 2.0 gph 80°B Delevan nozzle, 100 psi fuel, 40/50 psi air FAATC config Resonate used for this test:
  - 2.0 gph 80°W manufacturer nozzle, 100 psi fuel, 50 psi air

Ignitorless stator Muffler foam retained with wire



Figure 7-S-17. Typical Configuration of the Stator and Turbulator





Figure 7-S-13. Stator





Figure 7-S-14. Turbulator, Front View and Back View



12. Safety Wire Affixed to inside of the Muffler for Restrainin



Figure 7-S-29 Stator Axial Position (looking into draft tube)











#### **Seat Burner Settings**

- Fuel Nozzle: Delavan 2.0 gal/hr 80° spray pattern W "all purpose" Face of FRH to nozzle tip: 1-1/8"
- Fuel nozzle adapter to static plate: 2-3/8"
- Static Plate Angle: centerline of igniters at 0°
  - Looking into the cone of the burner from above, the centerline between the igniters will be at 0° on the burner reference plane
- Fuel pressure: 108 psi (+/- 4 psi)
  - Pressure used as a starting point when checking fuel flow rate
- Air pressure: 45 psi
- Air Temperature: 40-60°F Fuel Temperature: 32-52°F
- Internal settings identical to the cargo sonic

Seat Cushion Test Method Update IAMFTWG, June 19-20, 2013, Manchester, UK



#### **Development of Burner Settings**

- Began with manufacturer's recommend settings for placement of static plate and igniters
- Air pressure
  - 30 40, 50, psi tested initially
  - 45 psi produced the most repeatable results which were consistent with Park burner results
  - Same air pressure used on cargo burner
- Nozzles
  - Delavan B (solid spray pattern)
  - Delavan A (hollow spray pattern)
  - Delavan W (all purpose spray pattern)
  - W nozzle selected based on cargo and seat burner test results

**Seat Cushion Test Method Update** IAMFTWG, June 19-20, 2013, Manchester, UK















# 11 TC Map – 1" vertical Increments & 1" TC spacing



Horizontal & vertical centrelines shall be within +/- 2 mm of true position.

FIGURE 2 - FLAME TEMPERATURE MEASUREMENT POSITIONS FOR KEROSENE BURNER

#### Flame temperature mapping

- Engineering Report 3A CARLIN 200 CRD

| Burner N | lap looking | into the Bur | ner [°F] - Ma | x Values |        |        |        |        |        |        |        | AVERAGE<br>Central 7 |
|----------|-------------|--------------|---------------|----------|--------|--------|--------|--------|--------|--------|--------|----------------------|
|          | TC 1        | TC 2         | TC 3          | TC 4     | TC 5   | TC 6   | TC 7   | TC 8   | TC 9   | TC 10  | TC 11  | TC's                 |
| Level 6  | 1420.0      | 1738.0       | 1850.0        | 1908.0   | 1912.0 | 1798.0 | 1777.0 | 1725.0 | 1686.0 | 1579.0 | 1204.0 | 1808.0               |
| Level 5  | 1671.0      | 1869.0       | 1947.0        | 1963.0   | 1981.0 | 1881.0 | 1894.0 | 1859.0 | 1848.0 | 1823.0 | 1611.0 | 1910.4               |
| Level 4  | 1697.0      | 1843.0       | 1919.0        | 1942.0   | 1972.0 | 1885.0 | 1942.0 | 1908.0 | 1886.0 | 1852.0 | 1679.0 | 1922.0               |
| Level 3  | 1634.0      | 1874.0       | 1904.0        | 1936.0   | 1961.0 | 1877.0 | 1947.0 | 1915.0 | 1871.0 | 1794.0 | 1573.0 | 1915.9               |
| Level 2  | 968.0       | 1323.0       | 1490.0        | 1609.0   | 1825.0 | 1766.0 | 1862.0 | 1813.0 | 1707.0 | 1474.0 | 1159.0 | 1724.6               |
| Level 1  | 602.0       | 805.0        | 1034.0        | 1175.0   | 1389.0 | 1363.0 | 1536.0 | 1389.0 | 1214.0 | 964.0  | 684.0  | 1300.0               |

| Level 5 | 1671.0 | 1869.0              | 1947.0 | 1963.0 | 1981.0 | 1881.0 | 1894.0 | 1859.0 | 1848.0 |   |
|---------|--------|---------------------|--------|--------|--------|--------|--------|--------|--------|---|
| Level 4 | 1697.0 | 1843.0              | 1919.0 | 1942.0 | 1972.0 | 1885.0 | 1942.0 | 1908.0 | 1886.0 |   |
| Level 3 | 1634.0 | 1874.0              | 1904.0 | 1936.0 | 1961.0 | 1877.0 | 1947.0 | 1915.0 | 1871.0 |   |
| Level 2 | 968.0  | 1323.0              | 1490.0 | 1609.0 | 1825.0 | 1766.0 | 1862.0 | 1813.0 | 1707.0 |   |
| Level 1 | 602.0  | 805.0               | 1034.0 | 1175.0 | 1389.0 | 1363.0 | 1536.0 | 1389.0 | 1214.0 |   |
|         |        |                     |        |        |        | "ala   | 11/1/2 |        |        | - |
|         |        | $\mathbf{I}_{\sim}$ | 201    | 201    | -      | 11/10  | 1/2    | _ 💓    |        | 5 |























#### **CARLIN CALIBRATION DATA**











# Baseline Calibration Data (T1 - Carlin 1) Conservative Certification Test Point





|     | Temp<br>(°F) | Heat<br>Flux<br>(BTU/hr) |
|-----|--------------|--------------------------|
| Avg | 2033         | 4836                     |
| Min | 1869         | 4509                     |
| Max | 2123         | 4938                     |













# Baseline Assessment – Calibration Data for Carlin

- T8 Carlin 2
- Standard 2D
   temperature map
   using 11 TC rake
- Standard TC
   calibration taken at
   level 4.5 with average
   = 2033°F (see previous
   slide)

| Resona                      | te           |              |               |             | Bu     | rner N | lap    |        |            |             |        |                   |
|-----------------------------|--------------|--------------|---------------|-------------|--------|--------|--------|--------|------------|-------------|--------|-------------------|
|                             |              |              |               |             |        |        |        |        |            |             |        |                   |
| <b>Test</b><br>Carlin MAP I | Purn1        |              |               |             |        |        |        |        | Date/Time  | 10:42:48.10 | 0.484  |                   |
| al IIII IVIAF               | builli       |              |               |             |        |        |        |        | 17/07/2018 | 10.42.46.10 | U AIVI |                   |
| Burner Ma                   | p looking in | to the Burne | er [°F] - Max | Values      |        |        |        |        |            |             |        | AVERAG            |
|                             | TC 1         | TC 2         | TC 3          | TC 4        | TC 5   | TC 6   | TC 7   | TC 8   | TC 9       | TC 10       | TC 11  | Central<br>TC's   |
| Level 7                     | 1845.3       | 1923.1       | 1951.1        | 1922.5      | 1970.7 | 1971.0 | 1901.7 | 1871.4 | 1695.3     | 1434.4      | 1108.6 | 1897.             |
| Level 6                     | 1862.8       | 1937.7       | 1959.4        | 1926.6      | 1987.4 | 1994.2 | 1943.9 | 1884.7 | 1720.1     | 1500.0      | 1150.3 | 1916.             |
| Level 5                     | 1917.5       | 1993.2       | 2008.6        | 2004.6      | 2077.6 | 2121.8 | 2111.6 | 2074.3 | 1958.9     | 1828.4      | 1380.9 | 2051.             |
| Level 4                     | 1767.2       | 1907.1       | 1890.2        | 1866.8      | 2017.0 | 2110.0 | 2111.6 | 2035.8 | 1894.4     | 1657.1      | 1304.3 | 1989.             |
| Level 3                     | 1261.9       | 1535.7       | 1612.3        | 1439.7      | 1671.5 | 1881.9 | 1921.0 | 1846.3 | 1627.8     | 1419.6      | 1027.7 | 1714.             |
| Level 2                     | 670.6        | 1004.1       | 1172.4        | 960.0       | 1101.2 | 1351.6 | 1455.3 | 1364.6 | 1157.2     | 905.6       | 588.2  | 1223.             |
| Level 1                     | 380.9        | 547.1        | 688.2         | 561.1       | 625.8  | 750.0  | 863.2  | 811.1  | 643.7      | 461.7       | 381.9  | 706.1             |
|                             |              |              |               |             |        |        |        |        |            |             |        |                   |
| Burner Ma                   | p looking in | to the Burne | er [°F] - Ave | rage Values |        |        |        |        |            |             |        | AVERAG<br>Central |
|                             | TC 1         | TC 2         | TC 3          | TC 4        | TC 5   | TC 6   | TC 7   | TC 8   | TC 9       | TC 10       | TC 11  | TC's              |
| Level 7                     | 1829.6       | 1916.7       | 1948.2        | 1906.4      | 1957.6 | 1953.5 | 1877.2 | 1850.2 | 1666.9     | 1418.3      | 1086.9 | 1880.             |
| Level 6                     | 1841.1       | 1924.5       | 1951.1        | 1910.7      | 1967.7 | 1961.3 | 1899.8 | 1854.8 | 1671.2     | 1452.7      | 1089.3 | 1888              |
| Level 5                     | 1900.2       | 1970.0       | 1996.0        | 1995.1      | 2062.4 | 2108.7 | 2102.3 | 2052.0 | 1927.8     | 1755.5      | 1311.3 | 2034.             |
| Level 4                     | 1701.7       | 1863.9       | 1856.1        | 1823.0      | 1985.9 | 2087.9 | 2095.7 | 2009.6 | 1866.2     | 1625.1      | 1250.1 | 1960.             |
| Level 3                     | 1189.8       | 1486.8       | 1548.1        | 1374.6      | 1622.1 | 1828.4 | 1881.6 | 1787.1 | 1563.4     | 1352.0      | 953.9  | 1657.             |
| Level 2                     | 647.4        | 967.1        | 1147.5        | 931.3       | 1068.1 | 1311.8 | 1398.3 | 1322.8 | 1097.9     | 867.8       | 557.6  | 1182.             |
| Level 1                     | 358.5        | 520.6        | 666.1         | 541.1       | 570.0  | 710.2  | 809.6  | 750.1  | 596.2      | 431.9       | 359.2  | 663.3             |











## Summary of Carlin Calibration Data











#### **SONIC FAA CALIBRATION DATA**









# Calibration Data for Sonic FAA Configuration (T5 – Sonic FAA 4 Temp. Map)

• Fuel P = 100 psi, Air P = 50 psi





|     | Temp<br>(°F) | Heat<br>Flux<br>(BTU/hr) |
|-----|--------------|--------------------------|
| Avg | 1734         | 3531                     |
| Min | 1670         | 2342                     |
| Max | 1788         | 3832                     |











# Next Generation Fire Test Burner For Powerplant Fire Testing Applications – Summer, Rehn, Nov17

#### **Burner Settings**

Nozzle: 80° B 2.0 gph

Flow-checked 2.00 gph @ 102 psi

Air Pressure: 50 psi

Copper Tube Heat Flux (3 test average): 5111.3 Btu/hr

Temperature check (first 3 tests with brand new 1/8"

exposed-bead thermocouples



Powerplants Fire Test Development November 1, 2017











## Calibration Data for Sonic (FAA Configuration)

- T5 Sonic FAA 4 Temp
   Map
- Standard 2D temperature map using 11 TC rake
- Standard TC calibration taken at level 4.5 with average = 1734°F (see previous slide)

| F | lame   | tempe     | rature   | map   | pin | g   |
|---|--------|-----------|----------|-------|-----|-----|
| _ | Engine | ering Ren | ort 3A C | ARLIN | 200 | CRD |

| Burner M | ap looking | into the Bur | ner [°F] - Ma | x Values |        |        |        |        |        |        |        | AVERAGE<br>Central 7 |
|----------|------------|--------------|---------------|----------|--------|--------|--------|--------|--------|--------|--------|----------------------|
|          | IC1        | 102          | 103           | 104      | 10.5   | 10.6   | 107    | 10.8   | TC 9   | TC 20  | 1011   | IC's                 |
| Level 6  | 1420.0     | 1738.0       | 1850.0        | 1908.0   | 1912.0 | 1798.0 | 1777.0 | 1725.0 | 1686.0 | 1579.0 | 1204.0 | 1808.0               |
| Level 5  | 1671.0     | 1869.0       | 1947.0        | 1963.0   | 1981.0 | 1881.0 | 1894.0 | 1859.0 | 1848.0 | 1823.0 | 1611.0 | 1910.4               |
| Level 4  | 1697.0     | 1843.0       | 1919.0        | 1942.0   | 1972.0 | 1885.0 | 1942.0 | 1908.0 | 1886.0 | 1852.0 | 1679.0 | 1922.0               |
| Level 3  | 1634.0     | 1874.0       | 1904.0        | 1936.0   | 1961.0 | 1877.0 | 1947.0 | 1915.0 | 1871.0 | 1794.0 | 1573.0 | 1915.9               |
| Level 2  | 968.0      | 1323.0       | 1490.0        | 1609.0   | 1825.0 | 1766.0 | 1862.0 | 1813.0 | 1707.0 | 1474.0 | 1159.0 | 1724.6               |
| Level 1  | 602.0      | 805.0        | 1034.0        | 1175.0   | 1389.0 | 1363.0 | 1536.0 | 1389.0 | 1214.0 | 964.0  | 684.0  | 1300.0               |

| Resona<br>TESTING LIM | ite          |              |               |             | Bu     | rner N | lap    |        |           |             |        |                  |
|-----------------------|--------------|--------------|---------------|-------------|--------|--------|--------|--------|-----------|-------------|--------|------------------|
| est                   |              |              |               |             |        |        |        |        | Date/Time |             |        |                  |
| ionic MAP E           | Burn4        |              |               |             |        |        |        |        |           | 02:40:33.37 | 3 PM   |                  |
|                       |              |              |               |             |        |        |        |        |           |             |        |                  |
| Burner Ma             | p looking in | to the Burne | er [°F] - Max | ( Values    |        |        |        |        |           |             |        | AVERAG           |
|                       | TC 1         | TC 2         | TC 3          | TC 4        | TC 5   | TC 6   | TC 7   | TC 8   | TC 9      | TC 10       | TC 11  | Central<br>TC's  |
| Level 7               | 1542.6       | 1798.6       | 1849.3        | 1855.9      | 1848.9 | 1828.1 | 1841.5 | 1840.1 | 1807.4    | 1728.7      | 1456.7 | 1838.            |
| Level 6               | 1576.9       | 1800.3       | 1848.5        | 1860.8      | 1853.1 | 1831.9 | 1839.5 | 1843.0 | 1812.9    | 1774.7      | 1519.1 | 1841.            |
| Level 5               | 1367.9       | 1664.9       | 1770.4        | 1805.5      | 1797.3 | 1775.8 | 1793.2 | 1813.4 | 1775.1    | 1733.2      | 1554.6 | 1790.            |
| Level 4               | 1224.9       | 1593.6       | 1720.5        | 1753.7      | 1745.3 | 1717.2 | 1729.4 | 1736.0 | 1708.3    | 1656.3      | 1414.7 | 1730.            |
| Level 3               | 908.2        | 1271.5       | 1525.8        | 1660.4      | 1692.7 | 1673.5 | 1661.9 | 1635.6 | 1558.7    | 1420.8      | 1176.0 | 1629.            |
| Level 2               | 673.3        | 947.7        | 1206.3        | 1339.6      | 1459.4 | 1443.6 | 1454.3 | 1361.2 | 1202.2    | 1000.6      | 769.7  | 1352.            |
| Level 1               | 509.2        | 662.8        | 858.3         | 1002.5      | 1059.0 | 1058.4 | 1091.3 | 948.0  | 787.6     | 641.8       | 544.6  | 972.1            |
|                       |              |              |               |             |        |        |        |        |           |             |        |                  |
| Burner Ma             | p looking in | to the Burne | er [°F] - Ave | rage Values |        |        |        |        |           |             |        | AVERAG           |
|                       | TC 1         | TC 2         | TC 3          | TC 4        | TC 5   | TC 6   | TC 7   | TC 8   | TC 9      | TC 10       | TC 11  | Central<br>TC's  |
| Level 7               | 1499.7       | 1760.9       | 1825.1        | 1814.2      | 1788.9 | 1767.4 | 1772.1 | 1795.1 | 1778.8    | 1679.9      | 1389.4 | 1791.            |
| Level 6               | 1476.0       | 1726.4       | 1817.8        | 1844.6      | 1833.6 | 1811.6 | 1817.0 | 1823.7 | 1793.0    | 1731.5      | 1458.1 | <del>1820.</del> |
| Level 5               | 1292.0       | 1600.0       | 1738.1        | 1788.3      | 1781.7 | 1760.0 | 1774.6 | 1781.2 | 1750.8    | 1685.2      | 1448.1 | 1767.            |
| Level 4               | 1117.1       | 1471.6       | 1652.2        | 1726.3      | 1730.0 | 1701.9 | 1710.8 | 1715.6 | 1686.6    | 1612.7      | 13713  | 1703.            |
| Level 3               | 838.1        | 1200.5       | 1468.7        | 1623.6      | 1670.6 | 1640.1 | 1638.2 | 1604.7 | 1513.2    | 1365.8      | 1080.4 | 1594.            |
| Level 2               | 608.0        | 885.4        | 1143.5        | 1308.0      | 1403.7 | 1387.4 | 1398.8 | 1303.1 | 1121.3    | 933.0       | 734.6  | 1295.            |
| Level 1               | 482.0        | 622.4        | 784.1         | 879.6       | 953.5  | 953.4  | 976.4  | 847.6  | 712.8     | 597.2       | 519.6  | 872.             |











## Summary of Sonic FAA Calibration Data













#### **MODIFIED SONIC CALIBRATION DATA**











#### Innovative R&D – Sonic Burner Modification

 Objective: Produce temperature and heat flux output data which demonstrate the modified Sonic burner can replicate Carlin conditions - i.e. Sonic can be calibrated according to AC20-135 guidance using the same equipment to produce similar results to a traditional oil burner.

- Details of modification
  - Removed foam from muffler poor fit and would get compressed in tube
  - Changed nozzle from Delavan 80°W 2.0 GPH to Danfoss 80°H 2.0 GPH
  - Added Carlin type turbulator (attached to fuel nozzle fitting with rod moved fully forward) – reached higher levels of combustion – similar effect to FAA flame retention head
- Standard calibration data incl: 7 TC rake, Cu tube, standard 2D temp map
- Panel burnthrough tests
- Initial repeatability trials













# Sonic Mod internals



Muffler foam was removed









**Added Carlin type turbulator** on fuel nozzle fitting













#### Fuel Flow Check – Based on FAA Procedure













# Calibration Data for Sonic Mod Configuration (T15 – Sonic Mod 1)

• Fuel P = 143 psi, Air P = 54.5 psi



| 6000 7             |   |          |          | <br>     |          |          | T 75     |                                    |
|--------------------|---|----------|----------|----------|----------|----------|----------|------------------------------------|
| 5800 -             |   |          |          | <br>     |          |          | 73       |                                    |
| 5600 -             |   |          |          | <br>     |          |          | 71       |                                    |
| <u>-</u> 5400 -    |   |          |          | <br>     |          |          | 69 E     |                                    |
| 5200 -             |   |          |          |          |          |          | _ 6/ლ    | Heat Flux                          |
| <u>m</u><br>5000 - |   |          |          |          |          |          | 65 2     | TARGET                             |
| 4800 -             |   |          |          |          |          |          | 63 🖺     |                                    |
| ¥ 4600 -           |   |          |          |          |          |          | 63 6     | RTD1 (Inlet)                       |
| 4400 -             |   |          |          |          |          |          | 59       | DTD2 (Outlet)                      |
| 4200 -             |   |          |          |          |          |          | 57       |                                    |
| 4000               |   |          |          |          |          |          | 55       |                                    |
| 6.00.00            | 8 | 00:00:30 | 00:01:00 | 00:01:30 | 00:02:00 | 00:02:30 | 00:03:00 | verage: 4888.1 BTU/h               |
| Ś                  | 8 | 8        | Ö        | 8        | 8        | 8        | 8 2      | verage: 10.1 BTU/ft <sup>2</sup> s |

|     | Temp<br>(°F) | Heat<br>Flux<br>(BTU/hr) |
|-----|--------------|--------------------------|
| Avg | 2021         | 4888                     |
| Min | 1889         | 4501                     |
| Max | 2116         | 5061                     |











## Calibration Data for Sonic (Mod Configuration)

- T17 Sonic Mod 3
   Temp & BTU/hr Map
- Standard 2D temperature map using 11 TC rake
- Standard TC
   calibration taken at
   level 4.5 with average
   = 2021°F (see previous slide)

| Resonate Burner Map                                      |              |              |               |        |        |        |        |        |            |             |        |                      |
|----------------------------------------------------------|--------------|--------------|---------------|--------|--------|--------|--------|--------|------------|-------------|--------|----------------------|
| TESTING LIMI                                             | TED          |              |               |        |        |        |        |        |            |             |        |                      |
| est                                                      |              |              |               |        |        |        |        |        | Date/Time  |             |        |                      |
| Sonic ModV                                               | 3 Burn6 Map  |              |               |        |        |        |        |        | 18/07/2018 | 11:24:19.24 | 5 AM   |                      |
| Burner Ma                                                | p looking in | to the Burne | er [°F] - Max | Values |        |        |        |        |            |             |        | AVERAGI              |
|                                                          | TC 1         | TC 2         | TC 3          | TC 4   | TC 5   | TC 6   | TC 7   | TC 8   | TC 9       | TC 10       | TC 11  | Central 7            |
| Level 7                                                  | 1683.8       | 1862.8       | 1978.6        | 2081.6 | 2133.9 | 2109.8 | 2095.5 | 2035.7 | 1944.0     | 1863.1      | 1440.5 | 2054.1               |
| Level 6                                                  | 1700.1       | 1877.5       | 2000.2        | 2102.2 | 2155.9 | 2117.2 | 2102.5 | 2037.8 | 1952.8     | 1877.0      | 1483.3 | 2067.0               |
| Level 5                                                  | 1712.1       | 1891.9       | 2017.1        | 2130.0 | 2165.6 | 2119.8 | 2100.2 | 2013.8 | 1959.8     | 1900.7      | 1547.1 | 2072.3               |
| Level 4                                                  | 1538.4       | 1812.3       | 1959.0        | 2048.1 | 2097.2 | 2039.2 | 1993.1 | 1919.9 | 1900.3     | 1895.3      | 1528.7 | 1993.8               |
| Level 3                                                  | 1334.5       | 1710.1       | 1829.8        | 1842.4 | 1803.3 | 1768.5 | 1745.8 | 1719.7 | 1764.5     | 1804.1      | 1411.7 | 1782.0               |
| Level 2                                                  | 1013.8       | 1502.0       | 1579.5        | 1393.4 | 1269.1 | 1288.7 | 1317.0 | 1326.3 | 1421.0     | 1476.2      | 1087.0 | 1370.7               |
| Level 1                                                  | 584.9        | 0.0          | 0.0           | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0        | 0.0         | 0.0    | 0.0                  |
|                                                          |              |              |               |        |        |        |        |        |            |             |        |                      |
| Burner Map looking into the Burner [°F] - Average Values |              |              |               |        |        |        |        |        |            |             |        | AVERAGE              |
|                                                          | TC 1         | TC 2         | TC 3          | TC 4   | TC 5   | TC 6   | TC 7   | TC 8   | TC 9       | TC 10       | TC 11  | Central 7<br>TC's    |
| Level 7                                                  | 1572.8       | 1793.3       | 1905.4        | 1971.3 | 2000.1 | 1986.5 | 1961.3 | 1908.9 | 1862.6     | 1779.8      | 1376.2 | 1942.3               |
| Level 6                                                  | 1627.8       | 1848.7       | 1970.4        | 2069.5 | 2121.6 | 2104.0 | 2092.3 | 2024.9 | 1940.8     | 1812.4      | 1403.7 | 2046.2               |
| Level 5                                                  | 1679.5       | 1866.4       | 1993.1        | 2107.2 | 2155.1 | 2109.1 | 2083.3 | 1999.7 | 1931.8     | 1860.4      | 1485.1 | 2054.2               |
| Level 4                                                  | 1500.0       | 1782.7       | 1929.1        | 2020.2 | 2052.6 | 1997.8 | 1959.1 | 1876.4 | 1861.9     | 1855.0      | 1474.5 | 1956.7               |
| Level 3                                                  | 1260.9       | 1665.3       | 1791.6        | 1777.7 | 1746.0 | 1697.7 | 1703.9 | 1666.7 | 1716.8     | 1748.6      | 1344.3 | 1728.6               |
| Level 2                                                  | 937.4        | 1424.6       | 1529.3        | 1361.3 | 1229.1 | 1203.3 | 1274.3 | 1266.0 | 1349.2     | 1385.2      | 1018.3 | 1316 <mark>.1</mark> |
| Level 1                                                  | 542.2        | 886.5        | 1004.9        | 860.9  | 725.7  | 673.2  | 773.7  | 775.8  | 792.4      | 769.2       | 533.2  | 800.9                |











## Summary of Sonic Mod Calibration Data











## Summary of All Burner Calibration Data













#### **ALUMINIUM PANEL BURNTHROUGH DATA**











### Burnthrough Data for Carlin

- Carlin panel burnthrough #1 (1/8 inch thick 2024-T3 ALCLAD AMS QQ-A-250/5)
- T9 Carlin Panel 3 (2:23 second burnthrough time)









Carlin Burn1 Panel - pre Carlin Burn1 Panel - post T9 - Carlin 3 pre burn T10 - Carlin 4 post burn 2033.5 2035.4 2122.7 4922.4 2124.4 4875.0 5015.2 4972.4 39 41

**Resor** 









### Sonic Mod Burnthrough

- Sonic Mod burnthrough #1 (1/8 inch thick 2024-T3 ALCLAD AMS QQ-A-250/5)
- T19 Sonic Mod 5 (3:16 second burnthrough time)



Sonic ModV3 Burn1 Panel PRE Sonic ModV3 Burn1 Panel POST

T19 - Sonic Mod 5 Pre Burn T20 - Sonic Mod 6 Post Burn

2022.0 2013.8

2130.9 2118.9

4670.1 4759.2 4598.8

4664.6

88.999 105











## Sonic Mod Burnthrough

- Sonic Mod burnthrough #2 (1/8 inch thick 2024-T3 ALCLAD AMS QQ-A-250/5)
- T22 Sonic Mod 8 (3:14 second burnthrough time)



Sonic ModV3 Burn2 Panel PRE T22 - Sonic Mod 8 Pre Burn Sonic ModV3 Burn2 Panel POST T23 - Sonic Mod 9 Post Burn

2039.9 2019.2

2141.2 2128.7

4693.3 4630.2

4786.6 4746.8

93.003 155













### Sonic Mod Burnthrough

- Sonic Mod burnthrough #3 (1/8 inch thick 2024-T3 ALCLAD AMS QQ-A-250/5)
- T30 Sonic Mod 16 (2:10 second burnthrough time)



Sonic ModV3 Burn4 BTU Map PRE T27 - Sonic Mod 13 Pre BTU Map Sonic ModV3 Burn4 BTU Map POST T28 - Sonic Mod 14 Post BTU Map

2029.1 2024.4 2144.3 2130.4 4724.2 4629.9

4734.0 4638.8 0.0

109.0

0.0

153.0













## Burn Times for 1/8 in. Thick Aluminum

| Burn #  | Burner / Config.                                                   | Pre-Test<br>Avg. Temp.<br>(°F) | Pre-Test<br>Avg. Heat<br>Flux<br>(BTU/hr) | Post-Test<br>Avg.<br>Temp. (°F) | Post-Test<br>Avg. Heat<br>Flux<br>(BTU/hr) | Burn -<br>Through<br>Time (m:ss) |
|---------|--------------------------------------------------------------------|--------------------------------|-------------------------------------------|---------------------------------|--------------------------------------------|----------------------------------|
| 1 – T9  | Carlin Baseline<br>July 17                                         | 2033                           | 4922<br>0:39 to 4500                      | 2035                            | 4875<br>0:41 to 4500                       | 2:23                             |
| 2 – T19 | Sonic Mod. $P_f=147$ , $P_a=61.5$ July 19                          | 2022                           | 4670<br>1:29 to 4500                      | 2014                            | 4599<br>1:45 to 4500                       | 3:16                             |
| 3 – T22 | Sonic Mod.<br>P <sub>f</sub> =147, P <sub>a</sub> =61.5<br>July 19 | 2040                           | 4693<br>1:33 to 4500                      | 2019                            | 4630<br>2:35 to 4500                       | 3:14                             |
| 4 – T30 | Sonic Mod.<br>P <sub>f</sub> =147, P <sub>a</sub> =61.5<br>July 20 | 2039                           | 4685<br>2:13 to 4500                      | 2030                            | 4662<br>2:42 to 4500                       | 2:10                             |









Next Generation Fire Test Burner For Powerplant Fire Testing Applications – Summer, Rehn, Nov17

### **Aluminum Tests**

- 0.125" 2024-T3 Aluminum
- No repeatability with 50 psi air pressure
- Very repeatable with 40 psi air pressure





Powerplants Fire Test Development November 1, 2017













## Summary of Burnthrough Times













Next Generation Fire Test Burner For Powerplant Fire Testing Applications – Summer, Rehn, Nov17

## **Air Pressure Comparison**

- 50 psi air had highest temperatures in previous testing
- Copper tube heat flux was relatively constant
- 40 psi air had highest copper slug heat flux
- Copper slug correlated best to aluminum burnthrough times















### **NOVEL MAPPING TECHNIQUES**









## Heat Flux (BTU/hr) Map – 1" vertical Increments





At each level: 1mins warm up was allowed and 3 mins of data recorded after this



Heat flux Mapping: Copper tube transitioned in 1" increments vertically

Copper tube cleaned between levels











## BTU/hr Mapping Technique (T8 - Carlin 2)



## BTU/hr Mapping Technique (T8 - Carlin 2)













## BTU/hr Mapping Technique (T7 – Sonic FAA 6)



## BTU/hr Mapping Technique (T7 – Sonic FAA 6)













## BTU/hr Mapping Technique (T17 – Sonic Mod 3)



## BTU/hr Mapping Technique (T17 – Sonic Mod 3)













## BTU/hr Mapping Technique (T27 – Sonic Mod 3)













## BTU/hr Mapping Summary





T27 – Sonic Mod 3



Burner BTU Map looking into the Burner [BTU/hr] - Peak Values

Level 6 - 5.5 inch

Level 5 - 4.5 inch

Level 4 - 3.5 inch

Level 3 - 2.5 inch

Level 2 - 1.5 inch

2304.1

885.9

Burner BTU Map looking into the Burner [BTU/hr] - Peak Values

Level 6 - 5.5 inch
Level 5 - 4.5 inch
Level 4 - 3.5 inch
Level 3 - 2.5 inch
Level 2 - 1.5 inch
Level 1 - 0.5 inch
Level 1 - 0.5 inch

Burner BTU Map looking into the Burner [BTU/hr] - Peak Values

Level 6 - 5.5 inch
Level 5 - 4.5 inch
Level 4 - 3.5 inch
Level 3 - 2.5 inch
Level 2 - 1.5 inch
Level 1 - 0.5 inch
Level 1 - 0.5 inch

| D.L. B. D.T.L. | Nam Indian | <br>[DTII/k-1 | Average Values |
|----------------|------------|---------------|----------------|
|                |            |               |                |

Level 6 - 5.5 inch
Level 5 - 4.5 inch
Level 4 - 3.5 inch
Level 3 - 2.5 inch
Level 2 - 1.5 inch
Level 1 - 0.5 inch
Level 1 - 0.5 inch

Burner BTU Map looking into the Burner [BTU/hr] - Average Values

Level 6 - 5.5 inch
Level 5 - 4.5 inch
Level 4 - 3.5 inch
Level 3 - 2.5 inch
Level 2 - 1.5 inch
Level 1 - 0.5 inch
Level 1 - 0.5 inch

F

Level 6 - 5.5 inch Level 5 - 4.5 inch Level 4 - 3.5 inch Level 3 - 2.5 inch Level 2 - 1.5 inch

Level 1 - 0.5 inch

Burner BTU Map looking into the Burner [BTU/hr] - Average Values

4462.6 4778.4 4261.2 3380.5 2242.3 1090.3



Level 1 - 0.5 inch









# 21 TC Map – ½" vertical Increments & ½" TC spacing offset







#### Higher Definition Mapping:

- 2 lines of thermocouples transitioned in ½" increments vertically
- TC's orientated Horizontally
- Brand New TC's used (Never burned)











## HD Temp Mapping (T18 Sonic Mod 4)

| Test                  | Date/Time                  |  |  |
|-----------------------|----------------------------|--|--|
| Sonic Modv3 MAP Burn1 | 19/07/2018 09:47:41.478 AM |  |  |

| Burner Map looking into the Burner [°F] - Max Values |        |        |        |        |        |        |        |        | AVERAGE<br>Central 7 |        |        |        |
|------------------------------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|----------------------|--------|--------|--------|
|                                                      | TC 1   | TC 2   | TC 3   | TC 4   | TC 5   | TC 6   | TC 7   | TC 8   | TC 9                 | TC 10  | TC 11  | TC's   |
| Level 11                                             | 1759.3 | 1909.0 | 2034.8 | 2130.5 | 2172.5 | 2133.8 | 2103.1 | 2042.0 | 1960.9               | 1895.5 | 1492.3 | 2082.5 |
| Level 10                                             | 1774.3 | 1936.6 | 2050.1 | 2141.4 | 2186.4 | 2149.2 | 2109.3 | 2043.1 | 1959.7               | 1913.6 | 1574.6 | 2091.3 |
| Level 9                                              | 1757.5 | 1935.4 | 2050.9 | 2149.0 | 2194.1 | 2146.6 | 2106.5 | 2022.8 | 1955.4               | 1916.5 | 1624.2 | 2089.3 |
| Level 8                                              | 1712.0 | 1915.2 | 2039.1 | 2136.1 | 2181.5 | 2117.8 | 2079.3 | 1982.3 | 1923.3               | 1910.9 | 1591.7 | 2065.6 |
| Level 7                                              | 1615.1 | 1867.4 | 1991.1 | 2071.1 | 2105.5 | 2030.2 | 1975.2 | 1910.7 | 1906.3               | 1891.8 | 1549.1 | 1998.6 |
| Level 6                                              | 1493.1 | 1815.4 | 1938.5 | 1989.3 | 2007.1 | 1920.0 | 1883.9 | 1833.6 | 1829.4               | 1874.6 | 1562.6 | 1914.5 |
| Level 5                                              | 1434.5 | 1783.8 | 1870.2 | 1840.2 | 1822.7 | 1770.1 | 1810.9 | 1743.5 | 1774.9               | 1795.2 | 1394.2 | 1804.6 |
| Level 4                                              | 1301.5 | 1716.7 | 1744.9 | 1615.7 | 1599.0 | 1541.2 | 1588.6 | 1612.9 | 1638.3               | 1668.9 | 1247.5 | 1620.1 |
| Level 3                                              | 1142.6 | 1567.2 | 1620.2 | 1422.0 | 1314.1 | 1296.3 | 1334.4 | 1367.1 | 1444.2               | 1441.9 | 1029.2 | 1399.8 |
| Level 2                                              | 955.7  | 1323.0 | 1398.6 | 1191.5 | 1063.1 | 1030.8 | 1090.7 | 1104.9 | 1175.4               | 1128.6 | 769.7  | 1150.7 |
| Level 1                                              | 679.9  | 1010.0 | 1043.2 | 911.5  | 788.1  | 746.9  | 836.9  | 829.0  | 838.5                | 761.0  | 531.0  | 856.3  |

- 2D HD temperature map using 11 TC rake with ½" increments
- No fire board behind
- Sonic ModV3 Burn1 Map 19 July 2018
- Level 8 is 1" above burner exit cone  $C_L = 2066$ °F avg.











(T21 Sonic Mod 7)

- 2D HD temperature map using
   21 TC rake and ½" increments
- Fire Board behind
- Sonic ModV3 Burn2 Map 19 July 2018
- Level 8 (top) is 1" above burner exit cone  $C_L = 1874$ °F avg.
- Why low?















(T24 Sonic Mod 10) Resonate

- Innovative 2D HD temperature map using 21 TC rake located in impingement board
- Sonic ModV3 Burn3 Map 19 July 2018
- Level 8 (top) is 1" above burner exit cone  $C_L = 1864$ °F avg.















National Research Council Canada Conseil national de recherches Canada

1514.9 | 1502.4 | 1641.7 | 1637.9 | 1610.4 | 1552.3 | 1594.7 | 1547.0 | 1616.9

1579.2

(T29 Sonic Mod 15) Resonate

- Innovative 2D HD temperature map using 21 TC rake located in impingement board
- Sonic ModV3 Burn1 Map 20 July 2018
- Level 8 (top) is 1" above burner exit cone  $C_1 = 1882$ °F avg.













(T31 Sonic FAA 7)

- Innovative 2D HD temperature map using 21 TC rake located in impingement board
- Sonic FAA Map Burn2 20 July 2018
- Level 8 (top) is 1" above burner exit cone  $C_L = 1454$ °F avg.















## Difficulty with Carlin - factors: air P, density, temp?



# "FAA Fire Test Burner Apparatus Description – Feb 7, 2012, Singapore, Robert Ochs."

#### **Lessons Learned Over the Years**

- Not all burners are created equal
- Configuration of burner components can drastically alter flame
- Burner air flow can have a significant effect on test results, especially for lighter weight materials
- It's an oil burner, not precision lab equipment!





FAA Fire Test Burner Apparatus
FAA Fire Safety Certification Test Overview



Federal Aviation Administration

9











### Summary of Main Observations

- Sonic can be modified from current configuration to achieve traditional burner like output
  - Similar to work FAATC conducted with flame retention head (2.5 gph vs. 2.0 gph and varying fuel and air pressures)
  - Can calibrate sonic burner according to current AC20-135 guidance and equipment
  - Potentially simplifies any guidance appendix (AC20-135) for use of Sonic burner upcoming SAE A22/FAA task
  - Does not take advantage of the expected Sonic burner repeatability but have we seen this?
- Tools developed to achieve greater understanding of burner outputs
  - 2D HD temperature maps
    - · with and without impingement surface
  - BTU mapping
  - All to better qualify burner flames for comparison during any research effort
    - Ensure that we know where the hottest part of the flame is and the highest energy and relate that to calibration sensor location.
- For any given burner setup we might be able to establish useful expectations in terms of time to 4500 BTU/hr and peak value will likely rely on more data than simply average.
- Do not draw major conclusions from shallow data sets. We always need to assess the significance of our data. This is particularly important when talking about repeatability or reliability.



# Future Work: Considerations for Next Year's Triennial Conference

- Alu strip idea electrical cond. takes out difficult burnthrough assessment and is cheaper
- Composite panels?
- Other labs variability
- Consider fuel types
- Consider application of other tools
- Repeatability data/statistical analysis
- Numerical tools to predict flame dynamics
- Understanding individual burner limitations and sources of variability
- Sensitivity study of burner parameters could potentially further simplify set up
- Studying the modified Sonic Burner with off-the-shelf parts













# RESONATE: TESTING SERVICES WITH A FOUNDATION IN ENGINEERING EXCELLENCE

For further information on capabilities of **Resonate Testing Ltd** please do not hesitate to contact:

#### Mary Kelly

Test House Manager <u>marykelly@resonatetesting.com</u> +44 2890 736390

www.resonatetesting.com









