Next Generation Fire Test Burner for Powerplant Fire Testing Applications

International Aircraft Systems Fire Protection Working Group Atlantic City, NJ October 21 - 22, 2015

Steve Summer Steve Rehn Federal Aviation Administration Fire Safety Branch http://www.fire.tc.faa.gov

Background

- Currently specified oil burners are no longer commercially available
- Industry is left with the propane burner, however this burner has been shown to be less severe than an engine flammable fluid flame
- FAA Tech Center Fire Safety Branch has been tasked by Transport Airplane Directorate to develop burner performance standards for the nextgeneration fire test burner for powerplant fire testing
 - New burner should be much easier to calibrate, provide more consistent results, and be readily available for industry use.

Current Status

in the initial setting of operating

parameters of NextGen Burner.

components will be conducted

refine NextGen burner settings.

and compared with NextGen

burner performance to help

standardized, a revision of AC

20-135 and other regulatory

material will be able to

proceed.

Current Status – Testing

- Reconfigured burner to current Materials configuration
 - Replace flame retention head (FRH) with turbulator
 - Replace static plate with ignitor-less stator
 - Install spark plug in cone

Current Status – Testing

- Conducted tests to compare calibration results with the FRH setup under a variety of conditions
 - Air pressure = 50, 55 & 60 psi
 - Fuel flow = 2.50, 2.57, 2.63 gph
 - Delavan 80°W vs Delavan 80°B Nozzle
- Tested limited amount of panels remaining from the comparative testing conducted previously (slug calorimeter, aluminum, & Textech

TC 7

TC Avg.

TC 1

TC 2

TC 3

TC 4

Thermocouple Position

TC 5

TC 6

1650.0

1600.0

Ignitor-less Stator Calibration Results at 55 PSI Air Pressure

Ignitor-less Stator Calibration Results at 2.63 GPH Fuel Flow Rate

Comparison of Ignitor-less Stator Calibration Results With 80°W Nozzle vs 80°B Nozzle

Material Burn Through Time Comparison

Testing Summary

- Under all conditions tested, calibration with the ignitor-less stator resulted in significantly lower temperature readings than with the FRH.
- Additionally, heat flux when measured/calculated with the copper slug calorimeter was significantly lower
- However, burnthrough times for a limited number of aluminum and TexTech panels showed excellent agreement with FRH test data

Testing – Next Steps

- Lab modifications underway to be able to conduct composite (and other) testing under vibration
- Additional materials acquired for continued testing of ignitor-less stator configuration
- Next round of round robin/comparative testing to be initiated in coming months
 - Need to discuss in task group meeting recommended test materials, configurations, etc.

Current Status

Powerplants User Survey

Used to gain insight into current calibration/ operating conditions. Additionally, requested test data will help to initially set NextGen burner settings.

Setting of NextGen Burner Parameters

Utilizing the test data obtained from Oil/
Propane burner testing,
NextGen burner parameters will be set.
Testing will be conducted to compare NextGen with Oil/Propane burners.

Report Publication

An FAA report will be published detailing the NextGen burner settings and performance characteristics. This report will also detail testing and calibration guidelines/procedures for the NextGen burner.

Round Robin Testing

This initial round robin testing, along with the test data requested in the survey will aid in the initial setting of operating parameters of NextGen Burner.

Additional Round Robin/ NextGen Testing

Additional round robin testing with more advanced components will be conducted and compared with NextGen burner performance to help refine NextGen burner settings.

Revision of AC 20-135

Once a powerplants test method utilizing the NextGen burner has been defined and standardized, a revision of AC 20-135 and other regulatory material will be able to proceed.

Current Status – AC 20-135

- A sub-group had been formed with the goal of developing proposed rewording of AC20-135 in a parallel effort with NexGen burner development.
 - Testing requirements (i.e. when/how to vibrate sample, orientation of sample, etc) and testing equipment (i.e. thermocouple type, heat transfer calibration device, etc) will be addressed.
 - Actual burner operation and calibration will be left open subject to burner development.
- After initial sub-group meetings, it became evident that a more formal involvement from FAA was required and it was suggested that a proposal be submitted to the FAA from industry with the request that a formal group chartered for this task.

Current Status – AC 20-135 (cont.)

- Dirk Kearsley (BAE Systems) had drafted this request and submitted to FAA (6/2014).
- Internal FAA group of experts (Headquarters, Directorates, ACOs, etc) has been formed to initiate an evaluation of AC
- Work to be completed in two phases
 - Incorporate NexGen burner as an acceptable burner for powerplant testing
 - 2. Address longer term, more complete revision of AC to further address/clarify testing specifics

Questions

Contact Information:

Steve Summer 609-485-4138 Steven.Summer@faa.gov

Steve Rehn 609-485-5587 Steven.Rehn@faa.gov