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Outline )

= QOverview of the Battery Safety R&D Program
= Capabilities
= Battery Abuse Testing Laboratory (BATLab)
= R&D Interests and support

= Materials-level battery safety
= Battery calorimetry
= Nonflammable electrolytes
= System-Level battery safety
= |mproving control system architecture
= Vehicle crash modeling
= Failure propagation
= Battery fires



Batttery Calorimetry
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Battery Abuse Testing Laboratory (BATLab) ([@)Es.

= Comprehensive abuse testing platforms for cells, batteries
and systems from mWh to kWh

=  Program support primarily from the ground vehicle sector
=  Mechanical abuse
= Penetration
= Crush
= Impact
= Immersion
= Thermal abuse
= QOver temperature
=  Flammability measurements
= Thermal propagation
= Calorimetry
= Electrical abuse
= Overvoltage/overcharge
= Short circuit

= Overdischarge/voltage reversal
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Understanding Battery Safety

Materials R&D

Non-flammable electrolytes
Electrolyte salts

Coated active materials
Thermally stable materials

Testing
Electrical, thermal, mechanical abuse testing
Failure propagation testing on batteries/systems
Large scale thermal and fire testing (TTC)
Development for DOE Vehicle Technologies and USABC

Simulations and Modeling

e Multi-scale models for understanding thermal runaway

e Validating vehicle crash and failure propagation models

* Fire Dynamics (FDS) and Fuego simulations to predict
the size, scope, and consequences of battery fires

Procedures, Policy, and Regulation

* USABC FreedomCAR Abuse Testing Manual

e SAE J2464, UL1642
Testing programs with NHTSA/DOT to influence
policies and requirements
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Materials-Level Battery Safety 1) .

ithium-ion Materials Issues:

Materials choices and interfacial chemistry can impact these safety challenges




Calorimetry of Lithium-ion Cells ) .

Understanding the Thermal Runaway Response of Materials in Cells
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Can high energy cathodes behave like LFP during thermal runaway?
Where do “beyond lithium-ion” technologies fit on this chart? 3




Characterizing Thermal Runaway @

Runaway Enthalpy (kJ/Ah)
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Data provide a quantitative measurement of the runaway free energy




Effect of Cell State of Charge (SOC) @E.
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also see Roth, E. P. et al. SAND2004-0584, March 2004; Roth, E. P. SAND2004-6721, March 2005



Electrolyte Flammability

Sulfonimide/Hydrofluoro ether (HFE) Electrolytes to improve thermal stability and flammability
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HFE electrolytes have conductivities on the order of 2 mS/cm

to LiPF /carbonate electrolytes

HFEs show comparable discharge capacity in NMC/Graphite cells compared

11

G. Nagasubramanian et al. J. Power Sources 196 (2011) 8604-8609



Electrolyte Flammability ) .

Sulfonimide/Hydrofluoro ether (HFE) Electrolytes to improve thermal stability and flammability
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= Autoignition measurements at ambient pressure are a more relevant measure
of battery electrolyte flammability than measurements at elevated pressure

= HFEs have significantly higher autoignition temperatures in air relative to
carbonate solvents

LABORATORY DIRECTED RESEARDH B DEVELDPVENT

C. J. Orendorff et al. SAND2012-9186, “Advanced Inactive Materials for Improved Lithium-lon Battery Safety”



Electrolyte Flammability ) 5.

Flammability measurements Cell Vent Flammabilit
Electrolyte Ignition (Y/N) ATime (vent-ignition)

= Conventional bulk liquid fuel
flammability measurements (e.g.
ASTM D56) do not accurately EC:

reflect flammability representative

I failure in a battery

5:95 v%)
3:7 wt%)

Tools can be applied to electrolyte development efforts to
evaluate electrolyte flammability performance

AT

DR Flammability tools developed under Sandia LDRD Program

LABCRATORY DIRECTED RESESRCH G|

G. Nagasubramanian et al. J. Power Sources 196 (2011) 8604-8609




System-Level Battery Safety )i

Field failures could include:
= Latent manufacturing defects

" Internal short eirctits ——

Fisker incident in the wake of Super Storm Sandy , New Jersey, 2012

14
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Informing Battery Management Systems .

Development of a battery state-of-stability (SOS) diagnostic tool set

Rapid Impedance Measurement Tool

Battery management systems (BMS) b -
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control architecture for battery management
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USCAR Crash Safety ) .

Analog “pole test” of a battery

Mechanical behavior under compression
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Determining baseline mechanical behavior of batteries during crush/impact testing
Testing support to validate mechanical models for batteries during a crash scenario 16




. Sandia
Crash Safety Modeling ) .
Computer Aided Engineering for Batteries (CAEBAT) DOE VTO and NREL

Battery Crush Experiment (SNL, USCAR) Cell-level Mechanical Model (MIT)

Current density
contour and vector

Integrated Thermoelectrochemical & Mechanical Model (NREL)

Thermal Cell-to-Cell Propagation Model Thermoelectrochemical Model

= Use battery crush data to validate the integrated model
= Develop a predictive capability for battery thermal runaway response to mechanical insult

17




Failure Propagation Testing

10s1pP

2.2 Ah 18650 cell packs (92 Wh at 100% SOC)
Failures initiated by mechanical insult to the center cell (#6)
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10 pack series 18650 experimental wide view 061813.mp4

Limited propagation of the single point failure in the 10S1P pack

18

Orendorff, C. J. et al. SAND2014-17053, October 2014, “Propagation Testing Multi-Cell Batteries”



Failure Propagation Testing )i

10S1P and 1510P configurations
2.2 Ah 18650 cell packs (92 Wh at 100% SOC)
Failures initiated by mechanical insult to the center cell (#6)
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Complete propagation of a single point failure in the 1S10P pack 19




Understanding Battery Fires 1) .

= Heat Release Rate (HHR)
= Heat Flux

Physical Hazards —

V4
7
V4
y 4
y 4
y 4
y 4
y 4
y 4
V4

Environmental
Impact

ic gas species

Particulates released
u inogens

= Air emissions/air quality = Respirable fraction

= Particulate deposits
= ground/water




Experiments and Simulations )

10MeterOQutdoor.mpg fire 06 06 23 LQ.avi

=  While large scale testing capabilities exist, it is impractical to test every failure mode scenario
at every size scale

= Leverage the significant investments that the Department of Energy has made at SNL in
Advanced Scientific Computing (ASC) for Science-based Stockpile Stewardship, and adapt the
code to energy storage safety analysis

= Started this work focusing on modeling battery fires and their consequences (physical hazards,

health hazards, environmental impact) 71



Impact on Infrastructure ) .

Measured battery temperature
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= Scale up experiments to validate models (Wh - kWh = MWh)
= Feedback to design storage systems

= Inform fire suppression system design
= Provide to regulatory agencies (NFPA, NHTSA), utility companies, etc.




Health and Environmental Impact

EV and ICE vehicle fire emissions analysis:

Online FTIR
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i~ Online gas analysis

2
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- smoke temperature
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Tested element ICE vehicle EV ICE vehicle
i manufacturer 1 manujfacturer 1 mamifacturer 2 manufacturer 2
Test Fire Fire Fire Fire
Nominal Voltage (V) 330v* - 355Vv* -
Capacity (4h) 50 Ah* - 66,6 Ah*® -
Energy (kWh) 16.5 kWh* - 23.5kWh* -
Mass (kg) 1122kg 1128kg 1501 kg 1404 kg
Lost mass (kg) 212 kg 192 kg 278.5kg 275kg
Lost mass (%) 19% 17% 18.6% 19.6%

cox (g 460 400 508 000 618 490 722 640
CO; (mgliostg) 2172 545 72208 7678
cog 10 400 12 040 11700 15 730
CO (mgllosig) 20 53 2 373
HF (9) 1540 621 1470 813
HF (mg/lost g) 7 32 53 3
Maximal HRR (M) 42 MW 48 MW 47 MW 6.1 MW
Heat ”fES}jb”’””” 6314 MJ 6 890 MJ 8 540 MJ 10 000 MJ
Heat of combustion/unit
e 29.8 MI/kg 35.9 MI/ke 30,7 MIke 36.4 MI/ks

A Mhavactavictiee af the hatterm nack of the TV

Multiple approaches used to analyze and model gas emissions from battery system fires
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Gas pressure/volume & chemical analysis:
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Lecocq, A. et al. International Conference on Fires in Vehicles, FIVE 2012




Environmental Parameters i

Hydrocarbon fuel fire adjacent to battery rack (grid storage example)

No ventilation Sprinkler suppression

noVentilationFinal VR.avi suppressionMovie start.avi
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= Model predicts adjacent object surface temperature, interior temperature, internal
pressure in response to the fire

=  Example uses water as a suppressant, but others (CO,, Halon, etc.) can be incorporated

24




Lithium-lon Battery Challenges T .
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