Exceptional service in the national interest

Battery Safety R&D at Sandia National Laboratories

Christopher J. Orendorff

Sandia National Laboratories FAA Fire Systems Working Group Meeting October 30, 2014

SAND2014-19659 PE

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Outline

- Overview of the Battery Safety R&D Program
 - Capabilities
 - Battery Abuse Testing Laboratory (BATLab)
 - R&D Interests and support
- Materials-level battery safety
 - Battery calorimetry
 - Nonflammable electrolytes
- System-Level battery safety
 - Improving control system architecture
 - Vehicle crash modeling
 - Failure propagation
 - Battery fires

Capabilities

Cell Prototyping Facility

Modeling and Simulations

Battery Abuse Testing Laboratory (BATLab)

Materials R&D

Batttery Calorimetry

Large Scale Testing Facilities

Battery Abuse Testing Laboratory (BATLab)

- Comprehensive abuse testing platforms for cells, batteries and systems from mWh to kWh
- Program support primarily from the ground vehicle sector
- Mechanical abuse
 - Penetration
 - Crush
 - Impact
 - Immersion
- Thermal abuse
 - Over temperature
 - Flammability measurements
 - Thermal propagation
 - Calorimetry
- Electrical abuse
 - Overvoltage/overcharge
 - Short circuit
 - Overdischarge/voltage reversal

Sandia National Laboratories **Program Support & Collaborations** U.S. DEPARTMENT OF ENERGY **RESEARCH AND INNOVATION FOR** LABORATORY DIRECTED RESEARCH DEVELOPMENT VEHICLE EFFICIENCY AND ENERGY SUSTAINABILITY UNITEDS Energy Efficiency & NRTMENT OF THE NA **Renewable Energy** AT NEWT OF TRANSPORTATION cience & Technol SOLIDPOWER Battery STATES OF AMERICE www.nhtsa.gov SIL ELEDYNE SCIENTIFIC COMPANY A Teledyne Technologies Company Idaho National Laboratory MICHIGAN Argo NATIONAL LABORATORY National Laboratory

Understanding Battery Safety

Materials R&D

- Non-flammable electrolytes
- Electrolyte salts
- Coated active materials
- Thermally stable materials

- Electrical, thermal, mechanical abuse testing
- Failure propagation testing on batteries/systems
- Large scale thermal and fire testing (TTC)
- Development for DOE Vehicle Technologies and USABC

Simulations and Modeling

- Multi-scale models for understanding thermal runaway
- Validating vehicle crash and failure propagation models
- Fire Dynamics (FDS) and Fuego simulations to predict the size, scope, and consequences of battery fires

Procedures, Policy, and Regulation

- USABC FreedomCAR Abuse Testing Manual
- SAE J2464, UL1642
- Testing programs with NHTSA/DOT to influence policies and requirements

Materials-Level Battery Safety

Sandia National Laboratories

Lithium-ion Materials Issues:

- Energetic thermal runaway
- Electrolyte flammability
- Thermal stability of electrolytes and separators
- Inherent intolerance of abuse conditions

Materials choices and interfacial chemistry can impact these safety challenges

Calorimetry of Lithium-ion Cells

Understanding the Thermal Runaway Response of Materials in Cells

Can high energy cathodes behave like LFP during thermal runaway? Where do "beyond lithium-ion" technologies fit on this chart?

Characterizing Thermal Runaway

But that heat is generated at much different rates for the different cell types

Data provide a quantitative measurement of the runaway free energy

Effect of Cell State of Charge (SOC)

also see Roth, E. P. et al. SAND2004-0584, March 2004; Roth, E. P. SAND2004-6721, March 2005

Electrolyte Flammability

Sulfonimide/Hydrofluoro ether (HFE) Electrolytes to improve thermal stability and flammability

HFE electrolytes have conductivities on the order of 2 mS/cm HFEs show comparable discharge capacity in NMC/Graphite cells compared to LiPF₆/carbonate electrolytes

11

G. Nagasubramanian et al. J. Power Sources 196 (2011) 8604-8609

Electrolyte Flammability

Sulfonimide/Hydrofluoro ether (HFE) Electrolytes to improve thermal stability and flammability

- Autoignition measurements at ambient pressure are a more relevant measure of battery electrolyte flammability than measurements at elevated pressure
- HFEs have significantly higher autoignition temperatures in air relative to carbonate solvents

C. J. Orendorff et al. SAND2012-9186, "Advanced Inactive Materials for Improved Lithium-Ion Battery Safety"

Electrolyte Flammability

Flammability measurements

Conventional bulk liquid fuel flammability measurements (e.g. ASTM D56) do not accurately reflect flammability representative of a cell failure in a battery

Cell Vent Flammability Test (CVFT)					
Electrolyte	Ignition (Y/N)	ΔTime (vent-ignition) (s)	Burn time (s)		
EC:DEC (5:95 v%)	Y	1	63		
EC:EMC (3:7 wt%)	Y	3	12 NA		
50% HFE-1	N	NA			
50% HFE-2	N	NA	NA		

LiPF₆/Carbonate Electrolyte

TFSI/HFE Electrolyte (50% HFE)

Tools can be applied to electrolyte development efforts to evaluate electrolyte flammability performance

Flammability tools developed under Sandia LDRD Program

G. Nagasubramanian et al. J. Power Sources 196 (2011) 8604-8609

13

System-Level Battery Safety

Field failures could include:

- Latent manufacturing defects
- Internal short circuits
- Misuse or abuse conditions
- Ancillary component issues

Any **single point failure** that **propagates** through a entire battery system is an **unacceptable** scenario to ensure battery safety

Fisker incident in the wake of Super Storm Sandy , New Jersey, 2012

Informing Battery Management Systems Laboratories

Development of a battery state-of-stability (SOS) diagnostic tool set

Battery management systems (BMS)

- Measure symptoms of battery health (temperature, voltage, cell imbalance, etc.
- Need to be able to diagnose the root cause of a stability or safety issue
 - Could benefit from the ability to perform active diagnostics or prognostics

Diagnostic tools developed to for the next generation control architecture for battery management

USCAR Crash Safety

Analog "pole test" of a battery

Mechanical behavior under compression • end 100% SOC 008 end_0% SOC_007 2 100000 Force Displacement (mm) ▲ side_0% SOC_009 side_100% SOC_010 2 100000 Force Displacement (mm)

CT analysis to study structural failure modes

Determining baseline mechanical behavior of batteries during crush/impact testing Testing support to validate mechanical models for batteries during a crash scenario

Crash Safety Modeling

Computer Aided Engineering for Batteries (CAEBAT) DOE VTO and NREL

- Use battery crush data to validate the integrated model
- Develop a predictive capability for battery thermal runaway response to mechanical insult

Failure Propagation Testing

10S1P and 1S10P configurations 2.2 Ah 18650 cell packs (92 Wh at 100% SOC) Failures initiated by mechanical insult to the center cell (#6) 1000 900 10S1P 800 700 Temperature (C) 600 500 Jun.18,2013 2:21 PM 400 300 200 100 0 250 300 350 400 450 Time (seconds) -Cell 1 -----Cell 2 -----Cell 3 -----Cell 4 -----Cell 5 -----Cell 6 -----Cell 7 -----Cell 8 Cell 9

10 pack series 18650 experimental wide view 061813.mp4

Limited propagation of the single point failure in the 10S1P pack

18

Orendorff, C. J. et al. SAND2014-17053, October 2014, "Propagation Testing Multi-Cell Batteries"

Failure Propagation Testing

final event 10 pack parallel 18650 experimental 061713.mp4

Complete propagation of a single point failure in the 1S10P pack

Understanding Battery Fires

Experiments and Simulations

10MeterOutdoor.mpg

fire 06 06 23 LQ.avi

- While large scale testing capabilities exist, it is impractical to test every failure mode scenario at every size scale
- Leverage the significant investments that the Department of Energy has made at SNL in Advanced Scientific Computing (ASC) for Science-based Stockpile Stewardship, and adapt the code to energy storage safety analysis
- Started this work focusing on modeling battery fires and their consequences (physical hazards, health hazards, environmental impact)

Impact on Infrastructure

Measured battery temperature

100

Time (sec)

150

200

50

200 -

- Scale up experiments to validate models (Wh \rightarrow kWh \rightarrow MWh)
- Feedback to **design** storage systems
- Inform fire suppression system design
- Provide to regulatory agencies (NFPA, NHTSA), utility companies, etc.

Health and Environmental Impact

EV and ICE vehicle fire emissions analysis:

Tested element	EV manufacturer 1	ICE vehicle manufacturer 1	EV manufacturer 2	ICE vehicle manufacturer 2		
Test	Fire	Fire	Fire	Fire		
Nominal Voltage (V)	330 V ^a	-	355 V ^a	-		
Capacity (Ah)	50 Ah ^a	-	66,6 Ah ^a	-		
Energy (kWh)	16,5 kWh ^a	-	23,5 kWh ^a	-		
Mass (kg)	1 122 kg	1 128 kg	1 501 kg	1 404 kg		
Lost mass (kg)	212 kg	192 kg	278,5 kg	275 kg		
Lost mass (%)	19%	17%	18,6%	19,6%		
Online gas analysis – total quantity of emitted gases (FTIR and online analyzers)						
CO ₂ (g)	460 400	508 000	618 490	722 640		
CO2 (mg/lost g)	2 172	2 646	2 220,8	2 627,8		
CO (g)	10 400	12 040	11 700	15 730		
CO (mg/lost g)	49	63	42	57,2		
HF (g)	1 540	621	1 470	813		
HF (mg/lost g)	7,3	3,2	5,3	3		
Thermal effects						
Maximal HRR (MW)	4,2 MW	4,8 MW	4,7 MW	6,1 MW		
Heat of combustion (MJ)	6 314 MJ	6 890 MJ	8 540 MJ	10 000 MJ		
Heat of combustion/unit mass loss (MJ/ kg)	29,8 MJ/kg	35,9 MJ/kg	30,7 MJ/kg	36,4 MJ/kg		
Characteristics of the hattern nack of the FV						

Gas pressure/volume & chemical analysis:

Fire emissions plume simulation:

Multiple approaches used to analyze and model gas emissions from battery system fires

Lecocq, A. et al. International Conference on Fires in Vehicles, FIVE 2012

Environmental Parameters

Hydrocarbon fuel fire adjacent to battery rack (grid storage example)

No ventilation

noVentilationFinal VR.avi

Sprinkler suppression

suppressionMovie start.avi

- Model predicts adjacent object surface temperature, interior temperature, internal pressure in response to the fire
- Example uses water as a suppressant, but others (CO₂, Halon, etc.) can be incorporated

24

Lithium-Ion Battery Challenges

- Energetic thermal runaway
 - Anode and cathode decomposition reactions
- Electrolyte flammability
 - Low flashpoint electrolyte solvents
 - Vent gas management
 - Fuel-air deflagrations
- Thermal stability of materials
 - Separators, electrolyte salts, active materials
- Failure propagation from cell-to-cell
 - Single point failures that spread throughout an entire battery system
- Managing residual stored energy
- Diagnostics/prognostics to understand stability in the field

Acknowledgements

- David Howell (DOE)
- Brian Cunningham (DOE)
- Peter Faguy (DOE)
- Phil Gorney (NHTSA)
- Steve Summers (NHTSA)
- Jon Christophersen (INL)
- Anay Luketa
- Tom Blanchat
- Stephan Domino
- John Hewson
- Harry Moffat

- Tom Wunsch
- Leigh Anna Steele
- Josh Lamb
- Pete Roth
- Mani Nagasubramanian
- Kyle Fenton
- David Ingersoll
- Scott Spangler
- Jill Langendorf
- Lorie Davis

Battery Safety R&D Program at Sandia: <u>http://energy.sandia.gov/?page_id=634</u> ECS Interface Issue on Battery Safety: <u>http://www.electrochem.org/dl/interface/sum/sum12/if_sum12.htm</u>

