Improvements in Aircraft Fire Detection

October, 2017

Jim Milke, Irene Lemberos, Nick Schraffenberger, Selena Chin Dept of Fire Protection Engineering University of Maryland

Motivation

- Need for timely fire detection in cargo compartments on board aircrafts
- High proportion of nuisance alarms from smoke detection systems
- Nuisance alarms lead to
 - operational delays
 - unscheduled landings
 - unnecessary safety recourse
 - potential to ignore alarms if nuisance alarms become frequent

Overview

Background study completed

- Requirements for detection in FAR
- > Nuisance:fire source ratios
- Configuration of spaces
- Detection technologies

Planning for experimental portion of project initiated

Discrimination Strategies

- None: Single sensor, single threshold
- Health-monitoring of sensor
- Alarm confirmation (necessitates time delay)

Multi-sensor

- ≻ "or" logic
- Algorithm

Nuisance Alarms-Cargo Compartments

Analyzed frequency of nuisance alarms in cargo compartments

FAA database of reported fire related events for all civil flights between 2002-2014

Event categories

- nuisance alarm
- likely a nuisance alarm
- possibly a nuisance alarm
- unlikely a nuisance alarm
- Unknown
- real fire condition

Smoke Detection Deficiencies

91.5% of reported incidents in all cargo compartments are from nuisance alarms or likely nuisance alarms

Rate of Nuisance Alarms in all Cargo Compartments

Rate of Nuisance Alarms in Inaccessible Cargo Compartments

93.5% of reported incidents in inaccessible cargo compartments are from nuisance alarms or likely nuisance alarms

ULD Smoke Detection Challenges

Response time set at 1 minute from ignition

- In regulations for buildings and industrial applications, detector response is associated with time for hazard development and time needed to respond
- No detection requirements for fires originating within ULDs under FAR regulations
 - Time delay to detect fire that originates within ULD (until breach of ULD)

Proposed Solutions

ULD

- Prevent undeclared hazardous material from entering shipping system (SE 125)
- Develop or improve containment systems (SE 126)
- New standards for the construction of standardized cargo containers (SE 127)
- Detection (maintain responsiveness, reduce nuisance alarm susceptibility)
 - Multi-sensor detection, consider video back-up
 - Include detection capability within ULD
 - ASD
 - Wireless spot detector

Hidden Areas

- Spaces not normally exposed or seen from inside of aircraft
- Contents include insulation, wire bundles, electronics, batteries, ducts, and piping
- Currently no detection in hidden areas

Proposed Solutions

Linear heat detection

- Minimal maintenance after installation
- Can route along existing wire bundles in hidden spaces

ASD

Flexible tubing for easy routing

Next Steps

Identify detection technologies to be used in experimental program

- Obtain agreement with manufacturers to use their components
- Outline experimental protocols
 - Small-scale experiments at UMD
 - Full-scale experiments at FAA Tech Center
 - Protocols to include:
 - Fire/nuisance source(s)
 - Configuration of small-scale test space
 - Instrumentation to document enviornment

