Engine Nacelle, Halon Replacement

Reconsidering Carbon Dioxide as a Fire Extinguishant ~ Status

Presented to: FAA International Aircraft Systems Fire Protection Working Group

By: Doug Ingerson Federal Aviation Administration WJ Hughes Technical Center/Fire Safety Branch Atlantic City Int'l Airport, NJ USA tel : 609-485-4945 email : Douglas.A.Ingerson@faa.gov

Date: 1 November 2017

Federal Aviation Administration

Presentation Overview

- Review nacelle fire simulator [FAATC NFS]
- Describe :
 - Fire extinguisher [VV02/C]
 - CO2 being used
 - Gas analyzer [Hal02 RBLT]
- Show CO2 test results to date
- Identify future plans.

FAATC NFS

FAATC NFS

TEST SECTION DIMENSIONS 48 INCH (1.22 m) OD SHELL 24 INCH (0.61 m) OD CORE ~ 10.25 FEET (3.12 m) LONG

IASFPWG Meeting, Atlantic City, NJ, USA, 1-2Nov2017

This is a schematic view. Not drawn to scale.

Fire Extinguisher : VV02/C

3 x 1 kW BAND HEATERS

VV02/C STORAGE VESSEL

VV02/C MOUNTED IN FRAME FOR TEST STRADDLING THE INLET DIFFUSER

[VV02 IS MANUALLY DISCHARGED]

Federal Aviation 7 of 21 Administration IASFPWG Meeting, Atlantic City, NJ, USA, 1-2Nov2017

Local CO2 Being Used

1. VV02 purged with UHP-air

- 2. CO2 drawn from local "low"pressure bulk source
- 3. Pump used to fill VV02 with CO2 to needed test weight.

Other Notes

A.Only using PURE CO2 in VV02 for this testing.

B. Chilling VV02 to fill.

- 1. Local Gas Analyzer is "Hal02 RBLT"
- 2. Modified Pacific Scientific Halonyzer 2; a Statham-derivative gas analyzer.
- 3. Analyzer is locally maintained.
 - A. Recently cleaned & calibrated for CO2 in air.
 - B. Used a local gas dilution system to create mixtures of 1, 3, 7, 18, 28, 34, 37, & 45%v/v CO2 in air; also exposed to 100%v/v CO2.

4. Currently installed for use in FAATC NFS.

EXPOSING THE GAS ANALYZER TO CO2 & AIR MIXTURES

GAS DILUTION SET-UP TO CREATE CO2 & AIR MIXTURES

GAS ANALYZER INSTALLED FOR USE TO SAMPLE FAATC NFS

Federal Aviation 10 of 21 Administration IASFPWG Meeting, Atlantic City, NJ, USA, 1-2Nov2017

Recent CO2 Fire Suppression Results

1. Working @:

- A. "high" ventilation : ≈ 2.5-3.0 lbm/s @ 125°F
- B. JP-8/Jet-A spray fire : ≈ 0.25 US gal/min @ 150 °F
- C. CO2 injected at 38 °C & its vapor pressure

2. FAATC NFS fire suppression threshold

- A. Spot-checked baseline in Oct 2016
- B. Final outcomes to be based on thorough review

3. Recent CO2 results bracket threshold

Recent CO2 Fire Suppression Results

Near-term plans

1. Finish "high"-vent CO2 distribution testing.

2. Work with CO2 vs "high"-vent/pool fire.

- A. Establish acceptable fire suppression conditions.
- B. Capture associated CO2 distribution.

3. Review collected information & determine if further testing will occur.

APPENDIX.

References.

- 1) Advisory Circular 20-100, 1977, "General Guidelines for Measuring Fire-Extinguishing Agent Concentrations in Powerplant Compartments," United States Department of Transportation, Federal Aviation Administration, Washington, D.C. http://www.faa.gov/documentLibrary/media/Advisory_Circular/AC20-100.pdf
- 2) Ingerson, D., 2010, "Minimum Performance Standards for Halon 1301 Replacement in the Fire Extinguishing Agents/Systems of Civil Aircraft Engine and Auxiliary Power Unit Compartments, revision 04", <u>draft/working document</u>, United States Department of Transportation, Federal Aviation Administration, W.J. Hughes, Technical Center, Atlantic City, NJ. http://www.fire.tc.faa.gov/pdf/systems/MPSErev04_MPSeRev04doc-02submtd.pdf
- 3) Zabetakis, M. G., "Flammability Characteristics of Combustible Gases and Vapors," Bulletin 627, U.S. Department of the Interior, Bureau of Mines, Washington, DC, November 1965.

APPENDIX. Basic Justification for Reconsideration.

APPENDIX. Basic Justification for Reconsideration.

APPENDIX. Basic Justification for Reconsideration.

Initiated by: AFS-140

AC No. 20-100

Examples of minimum concentrations sufficient to extinguish fire and prevent its recurrence are as follows:

	AGENT	CONCENTRATION BY WEIGHT	IN PERCENT BY VOLUME	RELATIVE CONCENTRATION PERCENT
	⁰⁰ 2	49	37	40
	CH3Br	30	11	15
	CH2BRCL	36	11	25
	CF2Br2	26.5	5	15
	CF3Br	22	6	15
r 8				Page 9

 \thickapprox 28 %v/v CO2 per BoM Bulletin 627 < 37%v/v CO2 per FAA AC 20-100

