The Impact of Low Flashpoint Fuels on FAA Flammability Requirements

Steve Summer Federal Aviation Administration Fire Safety Branch http://www.fire.tc.faa.gov



#### Federal Aviation Administration

International Aircraft Systems Fire Protection Working Group Atlantic City, NJ November 17-18, 2009

# **Fuel Tank Flammability - Background**

- Since 1960, 18 airplanes have been damaged or destroyed by fuel tank explosions
- Previous rules attempted to prevent ignition sources but this has not been completely effective
- New rule published July 21, 2008 to significantly reduce the likelihood of fuel tank explosions in:
  - Existing fleet
  - Newly produced airplanes
  - Future airplane designs
- The goal is to prevent fuel tank explosions by establishing a performance-based set of requirements that set acceptable flammability exposure values in tanks most prone to explosion



## **Balanced approach to fuel tank safety**

• Flammability reduction significantly reduces hole size in flammability layer, significantly reducing the likelihood of future accidents.



# Ignition Prevention Layer

Some holes eliminated (e.g. design changes to preclude single failures)
Other holes reduced in size (human factors/ maintenance issues, unknowns, etc.)

#### Flammability Layer

-Reducing flammability exposure significantly reduces holes (flammability reduction) -Small holes remain due to system performance, dispatch relief, system reliability, etc.





## **FTFAM - Background**

- The Fuel Tank Flammability Assessment Method (FTFAM) is an Excel<sup>©</sup> based macro based on work originally performed by the 1998 ARAC Fuel Tank Harmonization Working Group.
- It is a comparative analysis tool to examine airplane fuel tank flammability.
- The program utilizes Monte Carlo statistical methods to determine several unknown variables, using standardized distributions in order to calculate the fleet average flammability exposure time of a given fuel tank.
- From 1998 Present, the FAA has utilized input from industry and information gained from various research activities to help refine and improve the model's capabilities.



# FTFAM - Background (cont.)

- The FTFAM utilizes these techniques to generate values for several unknown variables, utilizing standardized distributions.
  - Fuel flashpoint temperature
  - Ambient ground temperature
  - Ambient cruise temperature
  - Flight mission length
- Additional functionality of the program:
  - Single flight analysis (for troubleshooting)
  - Random Number Freeze (for troubleshooting)
  - Warm day analysis
  - Flammability Reduction Method (FRM) effectiveness analysis



## **FTFAM - Overview**





## FTFAM – Overview (cont.)



The Impact of Low Flashpoint Fuels on FAA Fla November 17, 2009



# **Flashpoint Distribution**

- The Standard Specification for Aviation Turbine Fuels (ASTM D 1655), specifies a minimum flashpoint value of 100 °F for Jet A fuel.
- Similar standards for other aviation fuels also only specify a minimum value.
- In attempt to determine the actual flashpoint of jet fuel as used in service, the FAA conducted a study in which 293 samples were taken from both domestic and international flights. Results of this study are published in FAA report DOT/FAA/AR-07/30.
- The results of that study are used by the program to develop the standardized distribution of flashpoints from which a Monte Carlo analysis can be performed.



#### **Probability Distribution of Flashpoint Temperature**





## The Utilization of Flashpoint in the FTFAM

- Previous work has shown that the LFL and UFL can be defined, in terms of temperature as:
  - LFL= (Flash Point 10) Altitude/808,
  - UFL=(Flash Point + 63.5) Altitude/512

(where temperature is in Deg F and altitude is in ft.)



Flammability Limits Relative to

The Impact of Low Flashpoint Fuels o November 17, 2009

#### Sample Flammability Zone for a Given Flight (Flashpoint = 120 F)





# **Flashpoint Distribution - Potential Impact**

- With the introduction of new fuels, there is a potential for a shift in this flashpoint distribution, despite the fact that the minimum specifications are the same as for Jet-A fuel.
- Any shift in this distribution, has a direct effect on the overall fuel tank flammability exposure and on the sizing and design of any Flammability Reduction Means (FRM) that is utilized.



#### **Probability Distribution of Flashpoint Temperature**





#### **Probability Distribution of Flashpoint Temperature**





| FAA Fuel Tanl                                                           | k Flammability Exposure Monte Carlo – Version 10<br>Please read the Instructions document before use |                       | June 28, 2007      |
|-------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-----------------------|--------------------|
| Airplane Data                                                           |                                                                                                      |                       |                    |
| Anplane Da                                                              |                                                                                                      |                       | Enter/Change input |
|                                                                         | Maximum Range                                                                                        | 4500 NM               | ONLY in Yellow     |
|                                                                         | Number of Engines                                                                                    | 2                     | cells              |
|                                                                         | Resultant Maximum Flight Time=                                                                       | 610 minutes           |                    |
|                                                                         |                                                                                                      |                       |                    |
|                                                                         | OAT cutoff (AFM Limitation) OAT Limit=                                                               | 130 Deg F             |                    |
|                                                                         |                                                                                                      |                       |                    |
| Flight Data                                                             |                                                                                                      |                       | Tank Ram Recovery  |
|                                                                         | Cruise Mach Number                                                                                   | 0.81                  | 0.35 % of Ptotal   |
|                                                                         | Cruise Altitude Steps                                                                                | 31000                 | ft                 |
|                                                                         |                                                                                                      | 35000                 | ft                 |
|                                                                         |                                                                                                      | 39000                 | π                  |
|                                                                         |                                                                                                      |                       |                    |
| Fuel Tank Usage Data                                                    |                                                                                                      |                       |                    |
|                                                                         | Tank Full any time befor                                                                             | e 610 minutes         | before touchdown   |
|                                                                         | Tank empty any time afte                                                                             | er 500 minutes        | before touchdown   |
|                                                                         | Engines or equipment started a                                                                       | at 90 minutes         | prior to takeoff   |
|                                                                         |                                                                                                      |                       |                    |
| Body Tank Input Data Set all values to zero if tank is not a body tank. |                                                                                                      |                       |                    |
| Tank in the fuselage with no cooling from outside air 0 1=Yes, 0=No     |                                                                                                      |                       |                    |
|                                                                         | Tank pressurized in flight                                                                           | , 0 1=Yes, 0          | )=No               |
|                                                                         | Pressure differential relative to ambier                                                             | nt <mark>0</mark> psi |                    |
|                                                                         | Tank is pressurize                                                                                   | d 0 minutes           | before takeoff     |
|                                                                         | Temperature of compartment surrounding tan                                                           | k 0 Deg F             |                    |
|                                                                         |                                                                                                      |                       |                    |
| Fuel Tank Thermal Data                                                  |                                                                                                      |                       |                    |
| The fuel is assumed to be loaded at ambient temperature                 |                                                                                                      |                       |                    |
|                                                                         | Tank Constants, Ground Conditions:                                                                   | Eng.OFF EngON         |                    |
|                                                                         | Equilibrium DeltaTem                                                                                 | p 60 60               | Deg F              |
|                                                                         | Exponential time Constant, Tank near Emet                                                            | 200 200               | Minutes            |
|                                                                         | Exponential time Constant -Tank near Empt                                                            | 400 400               | Minutes            |
| Tank Constants, Flight Conditions:                                      |                                                                                                      |                       |                    |
|                                                                         | Equilibrium DeltaTem                                                                                 | p <u>60</u>           | Deg F              |
|                                                                         | Exponential time Constant -Tank near Empt                                                            | y 200                 | Minutes            |
|                                                                         | Exponential time Constant -Tank near Fu                                                              | II <u>400</u>         | Minutes            |
|                                                                         |                                                                                                      |                       |                    |



#### **Flammability Exposure**





#### **Flammability Exposure**





#### Flammability Exposure





# Summary

- The introduction of new fuels into the fleet poses a potential shift in the flashpoint distribution, which leads to significant changes in the overall flammability analysis of a fuel tank.
- These changes have a direct impact on determining if an FRM is required, and on the sizing and design of any FRM that is utilized.
- Maintaining the same minimum spec value as Jet A is not sufficient. To avoid this issue, the actual flashpoint distribution of in service fuel needs to be monitored as new fuels are introduced into the fleet.



# For further details regarding the Fuel Tank Flammability Reduction Rule or the Fuel Tank Flammability Analysis Method:

http://www.fire.tc.faa.gov/systems/fueltank/FTFAM.stm

