Engine Nacelle Halon Replacement

Presented to: International Aircraft Systems Fire Protection Working Group

By:

Douglas Ingerson, Engineer Federal Aviation Administration WJ Hughes Technical Center Fire Safety Team Atlantic City Int'l Airport, NJ USA tel : 609-485-4945 email : douglas.a.ingerson@faa.gov

Date: 17Nov2009

Federal Aviation Administration

Presentation Overview Major Discussion Points

- The "MPSe rev03 to rev04" Transition
 - Overview & Status
- Flow Visualization in a Small-Scale Wind Tunnel
 - Work accomplished for qualitative purpose
 - Providing pictures of tube array & fuel pan lip wake regions
- Gas Analysis in the Nacelle Fire Simulator
 - Work accomplished for quantitative purpose
 - Outcomes show a certain MPSe modification is permissible
- Thermal Characterization of the NFS Fires
 - Test fixture modifications underway
 - Providing pictures & brief description

MPSe Rev 03 -> 04, Overview

- Issues driving the test process revision
 - Terminating the use of halon 1301 in the test process
 - General characteristics for halon-replacing fire suppressants are becoming more unlike halon 1301
 - Fire suppressants are becoming more like "streaming" agents, as indicated by the trend of increasing normal boiling points
 - Liquid & solid aerosols appear to offer solutions
 - Must degrade confusing effects occurring during the assessment of an "equivalent" amount of a fire suppressant in a nacelle fire simulator (NFS)

MPSe Rev 03 → 04, Overview Terminating Halon 1301 Usage

- Modify the halon 1301 benchmark process
 - A surrogate will replicate the flame extinction behavior of halon 1301 for certain test conditions
 - Surrogate = HFC-125
- Thermally characterize fire threats
 - Benchmark process may be dropped in the future
 - Energy release will be measured "globally" via a "control volume" while invoking symmetry logic
 - Air-sensing thermocouples
 - "Heat flux" plates

MPSe Rev 03 → 04, Overview Degrading the Negative Impacts on Assessment

Modify test process

- Change from an iterative search to a proof-test
- Requires preliminary testing to produce an identified suppressant delivery for the 2 NFS ventilation conditions

Review suppressant measurement rationale

- Investigate with flow testing at small- & large-scale
- Perhaps revise measurement concept when considering :
 - Trends for the characteristics of halon-replacing fire suppressants
 - MPSe rev03 → based solely on free-stream measurement
 - Wake region measurement provides a "total-flood" challenge
 - Rev04 \rightarrow plan to incorporate some wake region measurements
 - Outcomes from flow observations

MPSe Rev 03 -> 04, Status

Items Completed

- Small-scale flow visualizations
- Large-scale flow observations

Remaining tasks are in-process

- HFC-125 surrogate validation; testing begins momentarily
- Modify test fixture for thermal characterization; underway
- Administrative considerations for MPSe rev04; underway
 - Altering test process flow
 - Define additional alterations based on flow observation outcomes
 - Define surrogate benchmark processes
 - Author the draft document
 - Attain an accepted final draft

Flow visualization, Small-Scale Wind Tunnel Overview

- Utilizing a small-scale wind tunnel (SSWT) to visualize wake regions
 - Wake regions challenge fire suppressant distribution & relate to flame behavior
 - Observations guide choice of NFS sample point locations

SSWT details

- Suction tunnel; speeds up to 50 ft/sec (15.2 m/sec)
- Working section 4 x 4 x 7.5 inches (102 x 102 x 191 mm)
- Used 2 aerodynamic models; tube array & fuel pan lip
- Delivered smoke to visualize flow near models
- Red laser sheet illuminates horizontal planes

Flow visualization, Small-Scale Wind Tunnel Imagery - SSWT, tube array, orientation

Flow visualization, **Small-Scale Wind Tunnel** Imagery - SSWT, tube array, smoke visualizations

Flow visualization, Small-Scale Wind Tunnel Imagery - SSWT, fuel pan lip, model

Flow visualization, Small-Scale Wind Tunnel Imagery - SSWT, fuel pan lip, orientation

Flow visualization, **Small-Scale Wind Tunnel** Imagery - SSWT, fuel pan lip, smoke visualizations

Gas Analysis in the NFS Overview

Investigated sample point placement in the NFS

- Purpose?
 - Retain/reinforce "total-flood" concept related to this application
 - "Total flood" fire suppressant protects nacelle fire zone
 - FAA certification is accomplished accordingly
 - To reasonably improve the existing challenge for ANY fire suppressant without breaking historical link to existing work
- Performed testing with halon 1301, HFC-125, & CF₃I
 - Applied SSWT/visualization outcomes to the NFS work
 - Placed hot-wire anemometers (HWAs) & gas sample points in freestream & wake regions
 - Used 12 sample points, via 1/8 inch (3 mm) OD x 12 foot (3.7 m) long sample lines

Orientation

IASFP Working Group Meeting, Atlantic City, NJ 17-18Nov2009

Federal Aviation Administration

Orientation

free-stream & wake region

gas sampling points

Orientation

IASFP Working Group Meeting, Atlantic City, NJ 17-18Nov2009

Federal Aviation Administration

Gas Analysis in the NFS Orientation

Gas Analysis in the NFS Orientation

- Principal curiosity about wake region behaviors related to the halon 1301 distributions
 - Would halon 1301 still meet the intent of FAA certification if sample points were placed in wake regions in the NFS?
 - Per MPSe rev03, halon 1301 is delivered to the NFS meeting FAA certification intent for each ventilation condition, as measured in the free-stream
 - Outcome = halon 1301 again met the intent of FAA certification with sample points located in wake regions

Gas Analysis in the NFS note channel #12, **Halon 1301** inch aft of the fuel pan lip 3.6 lbf h1301 / high vent 3.6 lbf h1301 / high vent fwd ring - solid colors w/dots listing than # to physical location 11 11 Cb# 10 Ch# 10 mid ring - solid colors des free-stream free-stream & wakes Chells Child aft ring - dashed lines sta502, mid 12:15 Chai sta502, mid 11:45 Ché I 10 10 sta514,0.5" behind tube amov/1200 200 (top) - ytm Child D4 -man 03:00 (right) - red stall4, et gap Child Ch# 00 06:00 (bottom) - bil stall6, 20" behind tabe array/1200 Ch# 07 CLED nta\$14, ef:06:00 19:00 (kft) - bib Child Chall sta \$12 mid (15:45 sta490.fwd0600 SPRAY fire coloration Ch# 02 Ch# 02 ste309, 60° behind fiel pen lip 05:39 1215 (flame front spray, right) - whi Cb#11 Chế II sta490, fird 1200 04:30 (right) - om 2 Ch# 12 CHAT 2 07:30 (left) - gm sta514 eft1200 - Chain Chill 145 (flame front spray, left) - magenta sta\$15,10° behind fiel pen lip05.5 Chéi Chill 6%v/v for 0.5 sec Time (sec) 242 28 27 28 29 30 33 27 24 31 32 35

IASFP Working Group Meeting, Atlantic City, NJ 17-18Nov2009

return to CF₃I

Gas Analysis in the NFS HFC-125 & CF₃I

- Secondary curiosities about wake region behaviors related to HFC-125 & CF₃I distributions
 - What do the wake region behaviors look like?

	halon 1301	HFC-125	CF3I
normal boiling point (°F)	-72	-55	-8
superheated vapor density, T=10°F (lbf/ft^3)	0.44	0.33	0.58
design concentration (%v/v)	6	" 17.6 "	"7.1 "

- Looked at limited configurations which were found equivalent per MPSe rev03
- Attention is drawn to HFC-125 given pending work to define conditions for the surrogate benchmark concept

IASFP Working Group Meeting, Atlantic City, NJ 17-18Nov2009

go to **H**1301

Qualitative comments regarding hot-wire anemometry

- Complex issues challenge the HWA calibration during exposures to mixtures at varying temperature (casually/quiescently working this issue in the background)
- Qualitatively :
 - Velocity excursions expectedly occurred
 - Character of excursion depended on configuration
 - Observations suggest the wake regions were relatively undisturbed during the transient suppressant pulse
 - Localized agitation from the h1301 injection plumbing, as compared to the generic plumbing, was :
 - degraded during injection at high ventilation
 - intensified during injection at low ventilation

Thermal Characterization of the NFS Fires

- Plan to capture thermal transients to approximate the combustion energy release

- Transient thermal histories will be coordinated in a summation of $Q = mc\Delta T$ then doubled

- Will use 36 thermocouples

- Sixteen distributed over 4 metallic plates (3 new & 1 existing) and the aft/upper structural support

- Remaining 20 sense the air stream; 5 each for 2 similar cross-sections & 8 longitudinally

Conclusions

- Transition from MPSe rev03 to rev04 continues
 - Testing to investigate the HFC-125 surrogate concept will commence momentarily
 - Expecting task group review for draft rev04 in the Dec2009/Jan2010 time frame
- The halon 1301 distributions met the intent of FAA certification with gas analysis sample points "buried" in the wake regions of certain flameholding structures in the NFS
 - Historical fire & gas distribution observations remain intact
 - Sampling configuration is currently indeterminate

Acronyms, short-hand notations

APU = Auxiliary Power Unit

fwd = forward

HWA = hot-wire anemometer

mod-low = modified low

- MPSe = Minimum Performance Standard for Halon Replacement in Civil Aircraft Engine Nacelle & APU Compartments
- NFS = nacelle fire simulator for the MPSe, located at the FAA WJ Hughes Technical Center

OD = outside diameter

rev = revision

SSWT = small-scale wind tunnel

sta = station number, longitudinal position in the NFS

vent = ventilation

Appendix A1 Typical gas sample points for the NFS spray fire threat

Appendix A2 Typical gas sample points for the NFS pool fire threat

Appendix B1a Fire Suppressant Injection into the NFS, halon 1301

NOTES REGARDING THE INJECTION OF HALON 1301

- **BLUE**-COLORED PLUMBING IS FOR **LOW VENTILATION**-**CERTIFICATION** INJECTION
- RED-COLORED PLUMBING IS FOR HIGH VENTILATION-CERTIFICATION INJECTION
- ONLY ONE INJECTION SYSTEM IS INSTALLED PER TEST
- ONLY THE PLUMBING ON THE RIGHT SIDE OF THE ANNULAR CROSS SECTION IS SHOWN (LEFT/RIGHT SYMMETRY APPLIES)

Appendix B1b Fire Suppressant Injection into the NFS, halon 1301

NOTES REGARDING THE INJECTION OF HALON 1301

- BLUE-COLORED PLUMBING IS FOR LOW VENTILATION-CERTIFICATION INJECTION
- **RED**-COLORED PLUMBING IS FOR **HIGH VENTILATION-CERTIFICATION** INJECTION
- ONLY ONE INJECTION SYSTEM IS INSTALLED PER TEST
- ONLY THE PLUMBING ON THE RIGHT SIDE OF THE ANNULAR CROSS SECTION IS SHOWN (LEFT/RIGHT SYMMETRY APPLIES)

Appendix B2 Fire Suppressant Injection into the NFS, replacement

STA428

IASFP Working Group Meeting, Atlantic City, NJ 17-18Nov2009

Federal Aviation Administration