Modeling Wing Tank Flammability

Dhaval D. Dadia

Steven Summer Federal Aviation Administration Atlantic City Airport, New Jersey Dr. Tobias Rossmann Rutgers, The State University of New Jersey Piscataway, New Jersey

Federal Aviation Administration

Motivation

- Numerous accounts of wing tank explosions across the world
- Current flammability models are for center wing tanks
- The proposed regulation for wing tank safety are mostly based on center wing tank models
 - Models will predict ullage concentrations existing during typical ground and flight operations

Federal Aviation Administration

Current Work

- Flammable mixtures can be achieved in the wing tank
- Experiments are being conducted to build flammability models for wing tanks
- Current work involves
 - Predicting the influence of the surrounding temperatures on the characteristic fuel surface temperature
 - Creating a model that will predict flammability in wing tanks using heat transfer correlations

Overview

- Single Thermocouple Method (STM)
- Difference between Center Wing Tank and Wing Tank
- Center Wing Tank Flammability Model
- Heat and Mass Transfer Correlations
 - Experimental Results
- Computational Results

ederal Aviation

Distillation Curve

- Jet fuel is a mixture of many different hydrocarbons
- Fuel composition is characterized by the number of alkane reference hydrocarbons
- The approach reduces the number of components from over 300 down to 16 species (C5-C20 alkanes)
- Liquid compositions of different JP-8 samples with varying flashpoints are presented in terms of the mole fractions of C5-C20 alkanes

Single Thermocouple Method

Single Thermocouple Method

Center Wing Tank (CWT)

- The CWT has thin layer of fuel at the bottom of the tank
- 30% Mass Loading
 - The tank is heated from the bottom due to heat released from underneath the tank

Wing Tank (WT)

- The WT is mostly filled with fuel
- 80 % Mass Loading
- The tank is heated from the top from an ambient heat source such as the Sun

Sorting Data

The data is sorted because of the difference in the driving force

The data is sorted into

- Ascending Profile
 - The top surface is hotter than the fuel surface
 - The ullage temperature governs the film temperature
- Descending Profile
 - The fuel is hotter than the top surface
 - The fuel temperature governs the film temperature

Federal Aviation Administration

RS

Federal Aviation Administration

Summary of STM

- Correlation works best when:
 - Liquid fuel temperature is larger than the ullage temperature
 - Fuel temperature is the driving force
 - During Ascending pressure profile
 Vapor pressure remains constant

Base Model

- Current CWT Model (Polymeropoulos 2004)*
- Natural convection flow field between the heated floor and the unheated ceiling and sidewalls
- Ullage gases are well mixed due to natural convection and mass transfer
 - Liquid vaporization
 - Vapor Condensation
- Natural convection flow is in the turbulent regime

Principal Assumptions

- Well mixed gas and liquid phases
 - Buoyancy induced mixing
- Quasi-steady transport using heat transfer correlations
- The analogy between heat and mass transfer for estimating film coefficients for heat and mass transfer
- The liquid fuel and wall temperatures are known from experiments

Computational Method

Inputs

- The tank geometry
- Fuel loading
- Liquid fuel composition
- Tank pressure
- Liquid fuel, and tank wall temperatures as functions of time

Computes

- Equilibrium species concentrations of Jet A in a uniform temperature, constant pressure tank
- Temporal variation of vapor temperature and species concentration

Federal Aviation Administration

CWT Model

Simulation using center wing tank flight test data

The calculated THC is in good agreement with the measured THC

Federal Aviation Administration

*Vaporization of JP-8 Jet Fuel in a Simulated Aircraft Fuel Tank under varying ambient conditions -

Ochs 2006

CWT Correlations

Heat & Mass Transfer Correlations

- Horizontal surface:
 - Top surface: Lower surface of cooled plate
 - Top of Fuel Layer: Upper Surface of heated plate
- Vertical Surface:
 - Laminar Forced Convection on a flat plate

Difference in Model Correlations

The CWT model differs from the WT model in the ascending and cruise conditions due to:

- Percent load
- Ullage height
- Heat and mass transfer correlations
- Heat source
- Surface being heated

Experiments

- Experiments were conducted
 - For 60% and 80% mass loadings
 - For equilibrium temperatures from 80°F to 100°F
 - For cruising altitudes of 25000 feet and 34000 feet

Experimental Equipment

- Experiments conducted in an altitude chamber
- Designed to simulate temperature and pressure similar to a flight profile
 - Can simulate altitudes from sea level to 100,000 feet
 - Can simulate temperatures from -100°F to +250°F
- NDIR gas analyzer used to measure the total hydrocarbon concentration

Experimental Setup

- An aluminum fuel tank of dimensions 24"w x 24" d x 36" h was used
- Access panels on top for thermocouple penetration, ullage sampling, vent, and the fill tube
- Thermocouples measured surface, ullage, fuel surface and bulk fuel temperatures
 - The vent was equipped with a mass flow meter

Flight Profile

- The following flight profile will be used in the altitude chamber
- Cruise at 35000 feet
- Total flight time is
 2.5 hours

Combination of Models

3 120000 2.5 100000 Simulation using flight test data 2 80000 THC (% Propane) Using wing tank 60000 Pressure (Pa) dimensions on a CWT flammability model 40000 0.5 20000 Shows that the CWT model works for wing tanks in descending 0 0 2000 4000 6000 8000 10000 0 pressure profiles Time (Seconds) Experimental Flight Profile Flight Test

Wing Tank Correlations

Heat & Mass Transfer correlations

- Horizontal surface: (Ascending)
 - Top surface: Laminar Forced Convection on a flat plate
 - Top of Fuel Layer: Laminar Forced Convection on a flat plate
- Horizontal Surface (Cruise and Descending)
 - Top surface: Turbulent Forced Convection on a flat plate
 - Top of Fuel Layer: Laminar Forced Convection on a flat plate
- Vertical Surface:

Federal Aviation Administration

 Laminar Forced Convection on a flat plate

Test Results

Ascending Top Surface Heat Transfer Correlations

Test Results

Cruise and Descending Top Surface Heat Transfer Correlations

Summary of Experimental Results

- Laminar Forced Convection during ascent
- Turbulent Forced Convection the rest of the flight
- Shows ullage gases are well mixed in the ullage

High Reynolds number in the heat transfer cells in the ullage

Conclusion

- Single Thermocouple method can calculate THC using data from a single thermocouple in the tank
- The differences between the WT model and the CWT model:
 - Percent Load
 - Ullage Height
 - Heat and mass transfer correlations
 - Heat Source
 - Surface being heated
 - The CWT model cannot be applied in the ascending and cruise profiles, but can be applied in the descending profiles
 - Experiments will be conducted
 - To confirm the state of the ullage
 - To compare computed data to experimental data

Questions?

Federal Aviation Administration

