Preliminary Results of FAA Fuel Tank Inerting Flight Testing on the NASA 747 SCA

William Cavage AAR-440 Fire Safety Research Federal Aviation Administration

Systems Fire Protection Working Group DTA - Grenoble, France June 21-22, 2003

Outline

- Goals and Objectives
- OBIGGs
- Instrumentation / DAS
 - Fuel Tanks
 - System
 - Additional Parameters
 - OBOAS / FAS
- Preliminary Data
- Status

Testing Goals and Objectives

- Study the simplified inerting concept and validate/expand upon existing system performance models
- Develop/validate system sizing data
- Validate previous in flight inert gas distribution modeling done by FAA
- Measure the progression of flammability in the CWT and a single wing tank for a typical commercial transport airplane

OBIGGS - System Architecture

- Uses Air Separation Modules based on HFM technology
 - Excepts 350 degree F air from aircraft bleed system
 - Cools, filters, and conditions air
 - Air is separated in 3 ASMs and NEA is plumbed to output valves to control flow
 - $-\,$ OEA is dumped overboard with H/X cooling air
 - System flow control is presently configured with low flow orifice and high flow control valve
- System controlled by control box in cabin that is connected to system with cable
- System installed in empty pack bay area of 747 SCA

AAR-440 Fire Safety R&D

Simplified OBIGG System Installation

Simplified OBIGG System Installation

Instrumentation and Data Acquisition

- Various thermocouples and pressure transducers used
 - Evaluate system performance
 - Measure tank flammability parameters
 - Measure ancillary parameters
- OBIGGS system flow meter and 2-channel oxygen analyzer for NEA and OEA analysis
- Onboard Oxygen Analysis System (OBOAS) measurements
 8-channel system analyzes 8 locations in tank
- Flammability Analysis System (FAS) will measure progression of CWT and #2 wing tank flammability in flight
 - 1 location in forward section of center tank

AAR-440 Fire Safety R&D

Thermocouple Probe and Pressure Transducer

AAR-440 Fire Safety R&D

OBOAS Mounted in FAA AMCO Racks

DAS Rack with OBIGGS Analyzer

AAR-440 Fire Safety R&D

Photo of FAS Sample System and Analyzer

Cabin Instrumentation/Rack Diagram

Cabin Instrumentation/Rack Diagram

Test Plan

- Operated system in two flow mode for first test and in variable flow for remainder of testing
- Did a series of 7 flight tests ranging from 2 to 5 hours totaling approximately 30 hours of flight time
 - Validated the two-flow mode methodology and studied maximizing system flow during top of descent
 - Studied effect of CWT fuel on inerting and demonstrated the ability of a system to reduce the flammability exposure of an aircraft
 - Examined existing fleet flammability with baseline flammability testing

Preliminary Data Measured

- System performance similar to airbus (per ASM) but with notable differences
 - Needed full heat exchanger capability on the ground to keep Asm inlet below 185 degrees F in low flow mode
 - Bleed air flow considerable less on a per ASM basis due to low cruise bleed pressures
- Inert gas distribution similar to previous models
 - Air entered the tank in a less distributed manner leading to a greater inequity of inert gas distribution after landing
- Fuel tank temperature magnitudes similar to previous ground tests
 - Did not cool off in flight as much as predicted

Status

- Completed testing of the FAA Simplified Inerting System and commercial transport fuel tank flammability study
 - Preliminary data reduction completed
 - Data analysis to continue
- Preliminary results illustrate validity of the FAA concept
 - Plan to use data to expand existing system performance models
 - Fuel tank heating trends very much as expected
- More work needed to study fuel tank flammability