Engine Nacelle, Halon Replacement

Reconsidering Carbon Dioxide as a Fire Extinguishant ~ Status

Presented to:

FAA International Aircraft Systems Fire Protection Working Group,

Cologne, Germany

By:

On behalf of Doug Ingerson

Federal Aviation Administration
WJ Hughes Technical Center/ Fire Safety Branch
Atlantic City Int'l Airport, NJ USA

tel: 609-485-4945

email: Douglas.A.Ingerson@faa.gov

Date:

10 May 2017

Presentation Content...

- A. Brief Project Overview
- B. Project Goals/Status
- C. Current Challenges: CO₂ Storage, Handling, & Heating
- D. Summary
- E. Appendices
 - **★** References
 - \bigstar Explain the Change in Testing from CO₂ & N₂ to CO₂ alone
 - ★ Detailed VV02/C Installation Imagery

Brief Project Overview

A. Why revisit carbon dioxide (CO_2) ?

- 1. An existing fire extinguishing agent with history
- 2. Past and current use in ground-based systems, and aviation
- 3. Currently recognized as acceptable by the FAA
 - a. Advisory Circular 20-100/1977 (1)
 - b. Must satisfy 37%v/v CO₂ for ½ sec in the powerplant fire zone
- 4. Thinking existing concentration requirement can be reduced...
 - a. Will put CO₂ through testing similar to MPSHRe rev04 (2)
 - b. Will report outcomes when finished, regardless of outcome

Project Goals/Status

A. Goals

- 1. Assess CO₂ via MPSHRe rev04
- 2. Present results

B. Aspect(s) in progress...

- 1. Establishing CO₂ storage & usage techniques
 - a. Investigating/refining the cyclical-use process
 - 1) Pre- & post-test storage vessel handling/transport
 - CO₂ servicing & thermal-conditioning
 - 3) CO₂ injection during a test
 - b. Addressing a pressure-integrity problem with the storage vessel

C. Aspect(s) not yet started...

1. MPSHRe rev04 testing with CO₂ ...

Current Challenges

VV02 & CO₂ Heating

A. Creating a variable-volume storage vessel (VV02)

- 1. Needs to be "easily" & "reliably" serviced; i.e. hand-portable
- 2. Current design has pressure-integrity weakness at its neck seal
 - a. VV02 will require repeated handling/transport during testing
 - b. An o-ring seal is repeatedly failing after pressurizing 3-4 times
 - c. Repair requires full dis- & reassembly after each o-ring failure
 - d. Reviewing/reworking design to eliminate this o-ring seal...
- 3. Will not N₂-pressurize CO₂ in VV02 during MPSHRe testing

B. Learning about thermally-conditioning CO₂ in VV02

- 1. Modified & using an existing electrical heating system
- 2. Have 3 recent trials to characterize heating VV02 & CO₂

Current Challenges

REPEATEDLY-FAILING O-RING LOCATED HERE

VV02...

(at the neck seal)

THERMOCOUPLE (TC), CO₂-SENSING SERVICING (SVC) VALVE VV02 BAND-HEATER ASSEMBLY, 3 kW HYDRAULIC ACCUMULATOR, 1 U.S. GAL MANUALLY-DISCHARGED BALL VALVE

Current Challenges

VV02 installed...

(NOT EASILY VISIBLE)

- TC, CO2-SENSING
- SVC VALVE
- PRESSURE TRANSDUCER, CO₂-SENSING
- VV02 BAND HEATERS
- TC, VV02 SHELL

 MANUALLY-DISCHARGED BALL VALVE

Current Challenges Heating CO₂ in VV02/C ... 50 11 -AMBIENT CO2 PRESSURE-45 10 TEMPERATURE (P-T) **BEHAVIOR** 40 START HEATING CO2 35 8 NECK-SEAL O-RING FAILURE 30 OPEN MANUALLY-DISCHARGED 6 BALL VALVE Preparation of 2.90 kg CO2 in 3.46 L (839 kg/m^3) ... 20 **USEFUL NOTES:** 6.4 lbm CO2 in 211 cubic inches 1. 2.9 kg CO₂ is near VV02's 15 full capacity. 10 2. Summer-time, pre-test CO₂ heating likely 30 minutes or RESSURE AIR, TEST BAY [°C] less (need to attain 38°C). CO2, inside FRX BTL [°C] 3. CO₂ discharge duration EXTERNAL SHELL, FRX BTL [°C] CO2, inside FRX BTL [MPa] similar to halon/HFC-125. **ELAPSED TIME [sec]** CO₂ discharge pressure ≈ 2-3X halon or HFC-125. 300 600 1200 1500 1800 2100 2400 2700 900

Summary

A. In the near-term, will:

- 1. Prevent occasional VV02 faulty pressure integrity
- 2. Further refine CO₂ heating in VV02
- 3. Commence testing with CO₂ per MPSHRe rev04

Thank you.

References

Appendix

- Advisory Circular 20-100, 1977, "General Guidelines for Measuring Fire-Extinguishing Agent Concentrations in Powerplant Compartments," United States Department of Transportation, Federal Aviation Administration, Washington, D.C. http://www.faa.gov/documentLibrary/media/Advisory_Circular/AC20-100.pdf
- 2) Ingerson, D., 2010, "Minimum Performance Standards for Halon 1301 Replacement in the Fire Extinguishing Agents/Systems of Civil Aircraft Engine and Auxiliary Power Unit Compartments, revision 04", <u>draft/working document</u>, United States Department of Transportation, Federal Aviation Administration, W.J. Hughes, Technical Center, Atlantic City, NJ. http://www.fire.tc.faa.gov/pdf/systems/MPSErev04_MPSeRev04doc-02submtd.pdf
- 3) Yang, J.C., Cleary, T.G., Vázquez, I., Boyer, C.I., King, M.D., Breuel, B.D., Womeldorf, C.A., Grosshandler, W.L., Huber, M.L., Weber, L., and Gmurczyk, G., "Optimization of system discharge," in Gann, R.G., ed., Fire Suppression System Performance of Alternative Agents in Aircraft Engine and Dry Bay Laboratory Simulations, NIST SP 890: vol. I, U.S. Department of Commerce, Washington, DC, November 1995. http://www.nist.gov/customcf/get_pdf.cfm?pub_id=911554

Appendix

Explain the Change in Testing from CO₂ & N₂ to CO₂ alone

A. VV02 experiencing pressure integrity issues

- 1. Want to reduce its internal storage pressure
- 2. Doing so to reduce impact on VV02 seals

B. Check if CO₂ P-v-T behavior at 38°C/100°F presents a disconnect with prior MPSHRe-test experience

1. For halon 1301 & HFC-125, "benchmark" configurations required storage pressures $\approx 4.96 \text{ MPa}/720 \text{ psig}^{(a)}$

Bottle Fill	Density	Pressure @ 38°C/100°F
CO ₂ & N ₂ (b)	786.5 kg/m ³	20.5 MPa (≈ 2970 psig)
CO ₂	(49.1 lb/ft ³)	14.3 MPa (≈ 2080 psig)

2. Pressure-insult from injecting pure CO₂ still exceeds experience, so CO₂ alone it is...

Appendix

Explain the Change in Testing from CO₂ & N₂ to CO₂ alone

Appendix

Detailed VV02/C Installation Imagery

BAND HEATERS, 3kW TC, VV02 SHELL

MANUALLY- DISCHARGED BALL VALVE

Federal Aviation Administration

14 of 14