Halon Fire Extinguishing Agent Replacement for Engines/APUs

Industry Research Consortium Proposal

Alan Macias / Robin Bennett
Boeing Commercial Airplanes

INTERNATIONAL AIRCRAFT SYSTEMS FIRE PROTECTION WORKING GROUP MEETING
Koeln, Germany
22-23 May 2013

Alternatives to Halon for Aviation
Meeting sponsored by Halon Alternatives Research Corporation (HARC)
Chicago, Illinois, USA
11 June, 2013
Agenda

• Consortium Proposal
• Why is a Consortium Needed?
• Goal of the Consortium
• Statement of Work Outline
• Consortium Model – Starting Point
• Consortium Activities – Phased Timeline
• Questions / Actions / Contacts
Consortium Proposal

• Establish an Industry Consortium that will…
 – define a common non-halon fire extinguishing agent for use in engine/APU fire zones
Why is a Consortium needed?

• No widely-accepted alternate agent yet identified after years of effort
• Minimum concentration thresholds established on three agents via MPSHRe\(^1\) testing, but…
 – Cold discharge testing setback on one (Novec\(^{™}\)1230)
 – Toxicity concerns on a second (CF\(_3\)I)
 – Third is Kyoto Protocol greenhouse gas (HFC-125)
• Partial MPSHRe completion on one agent
 – Live-fire retest decision pending\(^2\) (KSA\(^{™}\))

1. Minimum Performance Standard for Halon Replacement in Civil Aircraft Engine Nacelle & APU Compartments
Why is a Consortium needed?

• Current approach likely not cost/time-efficient
 • Different agent solutions/systems a possibility
 – Higher agent costs for air framer OEMs and operators
 – Adds workload on regulators, consuming limited staff and facility resources
 » Slows down alternate agent testing validation and certification
 • Significant resource expenditures still remain to bring an acceptable agent to the field
 – Common challenges faced by multiple OEM stakeholders
 » Acceptable certification testing/validation standards, adverse trends compared to Halon 1301 (e.g. weight, toxicity, material compatibility)
Why is a Consortium needed?

• Expected Benefits of a Common Industry Solution
 – Development/Validation cost and resource sharing
 • MPSHRe validation, toxicity evaluation, and materials compatibility evaluations, among other tasks, are consolidated to some extent
 – Lower agent costs due to higher volume production
 • Lower production costs for airframe OEMs;
 • Lower maintenance costs for operators;
 • Higher investment return for selected agent/system supplier
 – Compressed schedule & reduced work
 • Allows airworthiness and environmental authorities to focus their limited resources
 • Minimizes materials compatibility evaluation work
 – Engine/Nacelle/APU/firezone components suppliers
 – Possible common airworthiness certification standards
Goal of the Consortium

• Primary Deliverable: To define a common non-halon fire extinguishing agent for use in engine/APU fire zones that…
 – is compliant to basic (i.e. not model specific) industry and regulatory requirements
 • Unique follow-on qualification/certification requirements for a given airplane model would be the responsibility of the air framer OEM
 • A sub-deliverable may be an associated novel distribution method for the given agent
 – meets multiple OEM (airframe, engine, APU, nacelle, etc.) requirements;
 – meets multiple governmental agency regulatory requirements;
 – provides a viable business solution for Consortium partners; and
 – is production-ready

• Develop Supporting Statement of Work
 – To conduct research, testing, and development of business agreements that will support provision of the Primary Deliverable
Statement of Work Outline

• Non-Technical Statement of Work
 – Terms & conditions, rights & responsibilities of participation, including financial contributions
 – Protection of Intellectual Property
 • Background, foreground, usage rights
 – Identification, engagement, and agreement on a Consortium facilitator
 – Etc.

– Technical Statement of Work
 • Agent/System Design & Validation Requirements
 – Firefighting effectiveness, weight targets, materials compatibility, toxicology targets, testing/validation/certification criteria, qualification criteria, etc.
 • Identification and Solicitation of Agent/System Proposals
 – Existing or new proposals from supplier partners for down selection evaluation
 • Define candidate agent/system evaluation plan and down selection criteria
 • Etc.
Consortium Model – Starting Point

• Existing Consortium Activity Template
 – Propose that National Institute for Aerospace Studies and Services (NIASS) serve as focal point, facilitator & fiscal/contracting agent
 • Not-for-profit corporation located in Arlington, Virginia, U.S.A. and affiliated with Aerospace Industries Association (AIA)
 – Initially model on NIASS *Consortium for the Study of High Altitude Ice Crystals*
 • Adapt approved Consortium working agreement terms as needed
 – Responsibilities of participation expected to include financial contributions to support:
 • material compatibility and other mutually beneficial testing (SNAP, toxicology, other?); Consortium management administrative costs

• Membership
 • Primary Stakeholders = Airframer OEMs
 – Primary responsibility for overall fire extinguishing system design, integration and certification
 • Members = Firex Agents/System Suppliers, Airline Operators, engine companies, nacelle suppliers, airworthiness authorities, etc.
Consortium Activities - Phased Timeline

• Phase I – Initial Formal Engagement & Follow-Up
 – This meeting to...
 1. evaluate Industry’s interest;
 2. identify potential members;
 3. obtain preliminary confirmation on acceptability of starting point for Consortium Model; and
 4. obtain preliminary confirmation of acceptability of NIASS as focal point, facilitator & fiscal/contracting agent
 – Follow-Up Telecon (Boeing to set up; late June 2013)
 1. Confirm sufficient interest exists to launch a viable Consortium;
 2. Consortium-Launch Membership List Defined
 3. Starting-point Consortium Model agreement
 4. Confirm NIASS as focal point

Copyright © 2013 Boeing. All rights reserved.
Consortium Activities - Phased Timeline

• Phase I - Follow-Up & Completion
 – Non-Technical Statement of Work Development & Agreement
 – NIASS Led
 » Terms & conditions, rights & responsibilities of participation, including financial contributions
 » Protection of Intellectual Property
 » Etc.
 – Consortium Member Process Check - Agreement to proceed with Phase II of Consortium’s development
 – Propose completion by end September 2013 (tentative)
Consortium Activities - Phased Timeline

• Phase II - Technical Statement of Work
 – Development of and agreement on…
 – Agent/System Design & Validation Requirements
 – Define candidate agent/system evaluation plans down selection criteria
 – Etc.
 – Consortium Member Process Check - Final agreement to proceed with Consortium
 – Propose completion by end 2013 (tentative)
Consortium Activities - Phased Timeline

- **Phase III – Primary Deliverable Development/Validation**
 - All activities required to produce the Primary Deliverable
 - Identification of potential candidate agents/systems
 - Solicitation of proposals from suppliers
 - Evaluation of proposals against Agent/System Design & Validation Requirements
 - Down selection to go-forward agent/system candidate(s)
 - Detail evaluation (as needed)
 - Testing & analysis
 - Final down selection to common agent/system candidate (as needed)
 - Follow-on evaluation (as needed)
 - Testing & analysis
 - Final agreement by members on Primary Deliverable
 - Documentation finalization
 - MPSHRe test results
 - Generic qualification (test plan, qualification test report)?
 - Toxicology test results
 - SNAP approval
 - Other?
 - Propose completion by end 2015 (tentative)
Contact:
Alan Macias, Boeing Propulsion Systems/Product Development
Halon Replacement for Engines/APUs – Project Manager
alan.o.macias@boeing.com; 562-496-5963
Thank You