Smoke transport in an aircraft cargo compartment

Ezgi Öztekin^{*}, Dave Blake[§] and Richard Lyon[§]

* Technology and Management International (TAMI), LLC

§ Federal Aviation Administration (FAA) William J. Hughes Technical Center

International Aircraft Systems Fire Protection Working Group Meeting 22 - 23 May 2012 • FAA Federal Aviation Regulations (FAR) Part 25, Section 858:

"If certification with cargo or baggage compartment smoke or fire detection provisions is requested, the following must be met ...

- a. The detection system must provide a visual indication to the flight crew within <u>one minute</u> after the start of fire.
- •••
- d. The effectiveness of the detection system must be shown for <u>all</u> approved operating configurations and conditions."
- Smoke detectors have high false alarm rates.
- Standardization of certification process is necessary.
- Ground and in-flight tests required for the certification process are costly and time consuming.

- FAA aims to
 - improve the detector alarm algorithms, thereby the reliability of the smoke detectors,
 - provide guidelines for the certification process, and standardize the procedures to use,
 - reduce the total number of required tests,

by integrating computational fluid dynamics (CFD) in the certification process.

- The objective of the present study is to
 - assess predictive abilities of available CFD solvers for smoke transport when applied to aircraft cargo compartments.

Methodology

- CFD solver candidates:
 - Commercial solvers:
 - Fluent, ...
 - Open source solvers:
 - FAA Smoke Transport Code
 - Fire Dynamics Simulator (FDS)
 - Code-Saturne
 - Jasmine
 - Sophie
 - FireFOAM-OpenFOAM
 - ...

- Our criteria:
 - Reliable
 - Accessible
 - Robust
 - Fast turnaround time
 - User-friendly (pre/post-processing, installation, maintenance)
 - Free or available at a small cost
 - Inexpensive to use/maintain
 - Gradual learning curve

- <u>Fire Dynamics Simulator (FDS)</u> developed at National Institute of Standards and Technology (NIST),
 - solves Navier-Stokes equations for low Mach number thermally-driven flow, specifically targeting smoke and heat transport from fires,
 - has a companion visualization program Smokeview (SMV),
 - has been verified/validated for a number of fire scenarios.
- Validation
 - FDS will be validated for three fire scenarios in an empty compartment: baseline, attached-sidewall, attached-corner.
 - Results will be compared with the full-scale FAA test measurements on two types of aircraft cargo compartments: Boeing-707, DC-10.

Methodology

• Type of Aircraft: Boeing-707

Ground test measurements: 15 tests with

- 40 thermocouples
- 6 smoke meters
- 3 gas analyzers

- narrow-body
- no ventilation
- negligible leakage

Three test cases (fire scenarios):

- Test case 1: Base fire
- Test case 2: Corner fire
- Test case 3: Side fire

* Blake, D., Development of Standardized Fire Source for Aircraft Cargo Compartment Fire Detection Systems, FAA Technical Note, DOT/FAA/AR-06/21, 2006.

Motivation Objective Methodology Results Conclusions Future Work Methodology Type of Aircraft: McDonnell Douglas DC10 wide-body forced ventilation 172" leakage Ground test measurements: 15 tests with Ceiling Air 1.38 45 thermocouples Inlets 4 smoke meters Leakage Duct 3 gas analyzers Looking from top Door 12.2 m 1.7 m Ceiling Thermocouple 9 m 6 m 3 m 13 m 12 m 11 m 10 m 8 m 5 m 4 m в **Ceiling Smokemeter** 50" Volume $\cong 3500 \text{ ft}^3$ 66' GasAft ○ ⊕..... Base M

* Blake, D., Development of Standardized Fire Source for Aircraft Cargo Compartment Fire Detection Systems, FAA Technical Note, DOT/FAA/AR-06/21, 2006.

133"

SMK AFT

AIR INLET

0

0

0

45

SMK MID

AIR INLET

0

GasTC 0

0

10

SMK

SMK FWI

Motivation

Results

Future Work

Methodology

- A compressed plastic resin block was used as a <u>fire source</u>*
 - When burned it yields combustion products similar to actual luggage fires,
 - It had imbedded nichrome wire to enable remote ignition,
 - Its burning was well-characterized with a set of cone calorimetry tests (heat release rate, mass loss rate, production rates of CO₂, CO, and soot were measured).

* Filipczak, R., Blake, D., Speitel, L., Lyon, R., and Suo-Anttila, J., Development and Testing of a Smoke Generation Source, Proceedings of the Fire and Materials Conference, San Francisco, California, 2001.

Methodology

Validation Metrics*

- In the first three minutes of fire initiation compare
 - Ceiling temperature rise
 - Light transmission change, $LT = exp(-K_m \sum_{i=1}^{N} \rho_{soot,i} \Delta x_i/L) \times 100 \ (\%)$
 - Gas concentration rise.

Table: Summary of experimental data

Compartment	Fire	Total number	Measurement type	Total number
type	scenario	of tests		of measurements
B707			Ceiling Temperatures	40
	Baseline	15	CO, CO ₂ concentrations $(5+5+5)$	3
	Side	3	Smoke concentrations	6
	Corner	3	Temperatures in the vertical	4
			Heat flux	2
0			Ceiling Temperatures	45
DC1	Baseline	15	CO, CO ₂ concentrations $(5+5+5)$	3
			Smoke concentrations	4

* Suo-Anttila, J., Gill, W., Luketa-Hanlin, A., and Gallegos, C., Cargo Compartment Smoke Transport Computational Fluid Dynamics Code Validation, DOT/FAA/AR-07/27, Federal Aviation Administration, July 2007.

Model set-up

Model parameters:

- Fire source: flaming resin block,
- Ventilation
 - None for B707,
 - Forced ventilation with 400 CFM total volumetric flow rate for DC10,
- Radiation modeling, radiative fraction: 0.55,
- Turbulence modeling: dynamic-coefficient Smagorinsky,
- Scalar transport using Superbee flux limiter,
- Reaction defined
 - using heat of combustion calculated from the cone calorimetry data (MLR and HRR),
 - by simple chemistry from the measured species yields obtained from the cone calorimeter (CO, CO₂, soot),
- Extinction coefficient = 7600 m²/kg.

Model set-up

Geometry, grid and materials: B707

- Rectilinear grids, single-domain solution,
- Non-uniform grid chosen according to characteristic fire diameter: $D^* = (\frac{Q}{\rho_{\infty}c_nT_{\infty}\sqrt{q}})^{2/5}$
- Using D*/Δx=5, 3.2x6.7x1.4 m³ volume represented by 132x144x72 grid points,
- Recessed areas are included in the flow domain,
- Wall material (cargo liner) is tested and have the following property set:

Motivation

Model set-up

<u>Geometry, grid and materials: DC10</u>

- 114x216x81 grid points are used to represent 5.2x14.0x1.8 m³ volume,
- Forced ventilation with an inflow velocity of 4.6 m/s is specified at each air inlets (total volume flux is 400 CFM),
- Leakage area is determined so as to avoid pressure build-up in the compartment,
- Wall material (galvanized steel) is assumed to have following property set:

Results

Grid Sensitivity Analysis:

B707 Baseline Fire – Grid Resolutions

Levels	N _x xN _y xN _z	Δx _{min} (m)	N _{total} (million)	D*/∆x _{min}	Time [#] (hrs)
GL1	75x100x36	0.042	~0.3	~2.0	~3
GL2	132x144x68	0.022	~1.4	~5.0	~40
GL3	164x180x135	0.011	~4.0	~10.0	~203

DC10 Baseline Fire – Grid Resolutions

Levels	N _x xN _y xN _z	Δx _{min} (m)	N _{total} (million)	D*/∆x _{min}	Time [#] (hrs)
GL1	54x108x20	0.088	~0.2	~1.3	~5
GL2	80x150x40	0.044	~0.5	~2.5	~21
GL3	114x216x81	0.022	~2.0	~5.0	~234

[#]OpenMP-runs using 6 processors on 2x2.93 GHz 6-Core Intel Xeon with 16GB memory.

Grid Sensitivity Analysis:

- Only the flow field where gradients are expected are further resolved,
- The flow quantities of interest (selected temperatures and species concentrations) are examined,
- For grid convergence D*/Δx must be at least 5,
- DC10 test case is computationally more expensive as it has
 - a larger flow domain (i.e., more number of grid points are required),
 - and additional time-step constraints due to forced ventilation.

Results

Test case 1: B707 Baseline fire:

- Ceiling temperatures are slightly overpredicted, particularly away from the fire source,
- Temperatures in the vertical are high in comparison to the test data,

05/22/2012

Results

Test case 1: B707 Baseline fire:

- Model predictions for smoke and CO₂ concentrations are good,
- However, CO concentrations are highly overestimated.

-50

0

50

Time (s)

100

150

320

315

310

305

300

295

290

0

5

10

15

20

Thermocouple number

25

30

35

40

Temperature (K)

MOD

EXP

·

Results

Test case 2: B707 Corner fire:

For **Corner** fire, similar to baseline fire

- Ceiling temperatures are slightly high compared to test data,
- CO₂ concentrations and light transmissions are reasonably well predicted,
- but CO concentrations and temperatures in the vertical are much higher in comparison to test data.

320

315

310

305

300

295

290

0

5

10

15

20

Thermocouple number

25

Temperature (K)

MOD

EXP

30

·

·

35

40

Results

Test case 3: B707 Side fire:

For Side fire, similar to baseline fire

- Ceiling temperatures are slightly high compared to test data,
- CO₂ concentrations and light transmissions are reasonably well predicted,
- but CO concentrations and temperatures in the vertical are much higher in comparison to test data.

19 of 21

- CO₂ concentrations and light transmissions are • reasonably well predicted,
- but CO concentrations are over-predicted in • comparison to test data.
- Ceiling temperatures are 2 degrees higher,
- Test case 4: DC10 Baseline fire:

For **DC10** basefire, similar to B707 cases

Results

Results

Conclusions

- For <u>all</u> four test cases model solutions are
 - in good agreement with the test data for light transmissions and CO₂ concentrations,
 - slightly high for ceiling temperatures but still within reported experimental uncertainty,
 - much higher for temperatures in the vertical, and CO concentrations.

• Results will be documented in a technical note.