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Motivation

FAA Federal Aviation Regulations (FAR) Part 25, Section 858:

“If certification with cargo or baggage compartment smoke or fire detection
provisions is requested, the following must be met ...

a. The detection system must provide a visual indication to the flight crew
within one minute after the start of fire.

d. The effectiveness of the detection system must be shown for all approved
operating configurations and conditions.”

Smoke detectors have high false alarm rates.
Standardization of certification process is necessary.

Ground and in-flight tests required for the -certification
process are costly and time consuming.



Objective

e FAA aimsto

— Allow for improved detector alarm algorithms, thereby the reliability
of the smoke detectors,

— reduce the total number of required tests,

by integrating computational fluid dynamics (CFD) in the
certification process.

e The objective of the present study is to

— assess predictive abilities of available CFD solvers for smoke transport
when applied to aircraft cargo compartments.



Methodology

CFD solver candidates:

— Commercial solvers:

Fluent, ...

— Open source solvers:

FAA Smoke Transport Code
Fire Dynamics Simulator (FDS)
Code-Saturne

Jasmine

Sophie

FireFOAM-OpenFOAM

e Qur criteria:

Reliable

Accessible

Robust

Fast turnaround time

User-friend Iy (pre/post—processing,
installation, maintenance)

Free or available at a small cost
Inexpensive to use/maintain
Gradual learning curve



Methodology

 Fire Dynamics Simulator (FDS) developed at National Institute of
Standards and Technology (NIST),

* solves Navier-Stokes equations for low Mach number thermally-driven
flow, specifically targeting smoke and heat transport from fires,

 has a companion visualization program Smokeview (SMV),

* have been verified/validated for a number of fire scenarios.

 Validation

e FDS will be validated for three fire scenarios in an empty
compartment: baseline, attached-sidewall, attached-corner.

e Results will be compared with the full-scale FAA test measurements
on two types of aircraft cargo compartments: Boeing-707, DC-10.



Methodology

e Type of Aircraft: Boeing-707 Fire source: Compressed plastic resin block
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— 40 thermocouples
— 6 smoke meters
— 3 gas analyzers
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Methodology

e Validation Metrics

A.

Thermocouple temperature rise
= from 0 to 60 seconds

= from 0 to 120 seconds

= from 0 to 180 seconds

Light transmission

= at 30 and 50 seconds (ceiling and vertical)

= at 60, 120 and 180 seconds (vertical — high,
mid and low)

Gas species concentration rise

= a3t 60, 120 and 180 seconds

SME FWD

“SMK MID

SMK AFT

GasTC36
| |
36

® GasMid

4

GasAft
[

30

40

SMK VERT



Methodology

Model set-up

Geometry, grid and materials:

= Rectilinear grids, single-domain solution

= Recessed areas are included in the flow domain
=  Grid dimensions: 36x72x36 for 3.6x7.3x1.7m,
maximum grid size = 0.1m, chosen according to : p

D* :( Q )2/5
PooCploon/g
where D* is the characteristics fire diameter.
=  Fiberglass epoxy resin:
properties of woven glass with 30% vinyl ester®

p = 1683 kg/m?>, ¢, = 1200 J/kgK, k = 0.3 W/mK

8 ”Measuring properties for Material Decomposition Modeling”, C. Cain and B. Lattimer
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Methodology

Model set-up

Model parameters:
= Fire source: flaming resin block, no ventilation,
= Radiation modeling, radiative fraction: 0.40,
=  Turbulence modeling: dynamic Smagorinsky,
= Scalar transport using Superbee flux limiter.

Reaction with a made up fuel using known yields of soot, CO, and CO,.

Heat of combustion = 21000 kJ/kg from known cone calorimetry data (MLR and
HRR).
Extinction coefficient = 8700 m?/kg (FDS default).



Results

B707 Baseline Fire

e Cone calorimetry data for mass loss rate
(MLR) is used to represent the fire source in
the model.

e Calculated heat release rate (HRR) is in
agreement with the experimental data.

e Energy Budget shows the contribution of
radiative and conductive heat losses.
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Temperature (K)

B707 Baseline Fire
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Results

A. Temperature comparisons

- Experimental uncertainty is ~6 °C close to the fire source, and

the fire source.
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B707 Baseline Fire

A. Temperature comparisons

- The difference between model

Temperature (K)

everywhere (~3 °C).
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Light Transmissian (%)

B707 Baseline Fire

B. Light transmission
N
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- Light transmissions are predicted within 5% of measurements for the first 60

seconds of fire initiation.

- There is less smoke in the model (at Fwd, Mid and Aft smoke meter regions).
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B707 Baseline Fire

B. Light transmission

- Model predicts 5% less smoke at Fwd, Mid, Aft smoke meter regions at 120
and 180 seconds.

LHAN HING

- Model vertical smoke meters at low and mid stations show 20% more smoke
compared to the experiments.
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Light transmission (%&/1t)

B707 Baseline Fire
B. Light transmission
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- Vertical distribution of smoke is not in agreement with the e'xperimental

data.

- Ceiling smoke distribution is within 5% of the experiments.
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CO concentration (ppm)

CO2 concentration (ppm)

B707 Baseline Fire

Results

C. Gas Species concentration

Both CO and CO, concentrations are low at t=60 s except for TC36,

experimental values at t=120, 180 s.
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B707

Baseline Fire

C. CO concentration

- The time lag for CO concentration at TC36 is almost 20 seconds.

140
120
100
80
60
40

CO (ppm)

20

Results

Measurements

I ! 1 ] | 1 !
B
- GasMidcO
IS | GasAftCO -------
A GasTC36CO

1 a-f-'llr'::: -I.. 1 1 | 1 |

0 50 100 150 200 250 300

Time (s)

05/09/2011

CO (ppm)

140
120
100
80
60
40
20

i
| 1 1

sug z z
5 - =
! - =
=2 = =
. 0
A g
= =
& ” =
z
=
3
T T T ,-I.,\ ;/-'-.\.. ;J T T
— \
B i Py %
i
- gt
.".I '.’
- ||I A
- J ,’;
.-"Ir _.' .
" fx" GasMidCO —
f_ff,f GasAffCO -------
GasTC36CO -

¥l

0 50 100 150 200 250 300

Time (s)

Smoke transport in a cargo compartment

17/20

I HINE



B707 Baseline Fire

C. CO, concentration

- Model data has a more gradual increase in the first 60 seconds.
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Conclusions

Our preliminary results show:

— Temperature

 Temperatures are predicted within experimental uncertainty, however, heat
losses must be examined further.

— Smoke

e Light transmissions are predicted within 5% close to the ceiling but 20% off
in the lower regions and agreement deteriorates in time.

— @Gas concentrations

* CO and CO, concentrations are predicted within experimental uncertainty,
however, mass checks show added CO, to be well above that of the
experiment.



Future Work

Further examination and in-depth analysis is required,

— check for energy and mass conservation, use of more accurate
material properties.

Model parameters must be examined

— for radiation and turbulence modeling.
Numerical error analysis must be done.
If B707 baseline fire scenario is found to be successful,

— Continue code validation for other B707 scenarios: attached-corner
and attached-sidewall cases, and for DC 10 cargo compartment with
all three fire scenarios.
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