Modeling Smoke Transport in Aircraft Cargo Compartments

Jill Suo-Anttila

Fire Science and Technology Department Sandia National Laboratories Albuquerque, NM

David Blake

Fire Safety Section FAA Technical Center

International Aircraft Systems Fire Protection Working Group (for systems website posting)

Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL85000.

Sandia National Laboratories Team Members

- Experimental
 - David Blake, Walt Gill, and Jill Suo-Anttila
- Model Development
 - Jim Nelsen and Stefan Domino
- Graphical User Interface and Code Development
 - Carlos Gallegos
- Technical Support
 - Louis Gritzo, manager of the Fire Science and Technology Department

Modeling Smoke Transport in Aircraft Cargo Compartments

<u>Goal:</u> Develop a CFD-based simulation tool to predict smoke transport in cargo compartments

- Improve the certification process
 - Identify optimum smoke detector locations
 - Specify sensor alarm levels
 - Identify most challenging fire locations
 - Reduce the number of flight tests
- Fast running
- Suitable for non-expert users
- Experimental data for source term characterization from FAA experiments
- Validated using FAA full-scale experiments

Built on firm FAA knowledge base

Software Design

Pre-Processor Overview

- Provide models for different aircraft
 - Boeing 707, 727, 747, etc.
 - User defined
- Capabilities
 - Refine mesh
 - Enter fire(s) location and type
 - Enter ventilation velocities and locations
 - Enter compartment temperature and pressure
 - Add obstacles and recessed areas
- Instantaneous visual feedback

lational aboratories

Running a Simulation Compartment and Mesh Specification

- Execute the Pre-Processor
- Select the type of compartment
 - 707
 - DC-10
 - User Defined
- Input the dimensions
- Enter the mesh size # of nodes

Running a Simulation Created 707 and DC-10 Meshes

- Automatically generated 707 mesh
- Curvature captured by mesh
- Right side of screen shows selected plane

- Automatically generated DC-10 mesh
- Internal view of compartment

Running a Simulation Recessed Area Specification

- 1. Advance to selected Y-plane
- 2. Select desired cells
- 3. Perform operation using buttons

Running a Simulation Obstacle Specification

Running a Simulation Ventilation and Fire Specification

- 1. Select cells
- Enter type of cell (inlet, outlet, fire) – cell colored to denote type
- 3. Use table to enter ventilation properties
- 4. Fire properties in file

		OK
, U Velocity	.5	Cancel
V Velocity	0	
W Velocity	0	
Pressure	0	
Enthalpy	295051	
Turbulent Energy	0	
Energy Dissipation	0	
Density	1.19948857	
Mixture Fraction 1	0	
Mixture Fraction 2	0	
Mixture Fraction 3	0	

Running a Simulation Mesh Refinement Specification

- 1. Select the plane for refinement
- 2. Use refinement tool
- 3. Enter level of refinement

Running a Simulation Running the Analysis Code

Smoke Transport Analysis Code

- Curvature of compartment is resolved on grid
- HRR, MLR are time varying inputs (as measured in FAA experiments)
- Species tracking: presently soot, CO, and CO₂ but addition of more or different species possible
- Simulation time = 1 hour per minute of real time
- Validated using FAA full-scale experiments

Post-Processor

Allow users to manipulate data in a variety of ways

- contour plots
- time history of field variables
- 3D smoke visualization in time

Code Validation Metrics

- Thermocouple temperature rise
 - 0 60 seconds
 - 0 -120 seconds
 - 0 -180 seconds
- Light transmission
 - 30 and 45 sec (ceiling and vertical)
 - 60 sec (vertical high, mid, low)
 - 120 sec (vertical mid and low)
 - 180 sec (vertical mid and low)
- Gas species concentration rises
 - 0 60 seconds
 - 0 -120 seconds
 - 0 -180 seconds

Experimental ceiling temperature distribution at 60 sec

Status of FAA Full-Scale Validation Experiments

- 707 experiments completed
 - Baseline center fire
 - Attached sidewall fire
 - Corner corner fire
 - Determined leakage ventilation had no impact on data
 - All 707 experiments were conducted without ventilation
- DC-10 experiments in progress
 - Ventilation validation
 - Three fire locations

Future Activities

- Continue validation of the smoke transport code
 - Finish code modifications
 - 707 validation comparisons
 - DC-10 validation comparisons
- Release of code to small user community (Spring '04)
 - Includes theory and users manual
- Revisions and final release of code (Feb '05)

