Presented by

Klaus Schmoetzer
Airbus, Dept. BCECS4
Head of
Conveyance Systems
28183 Bremen / Germany
E-mail: klaus.schmoetzer@airbus.com

Enhanced Cargo Monitoring
- Container Communication Interface
Study Item

International Aircraft Systems Fire Protection Working Group
Meeting in Atlantic City on November, 1st-2nd, 2005
Cargo Compartment Fire Detection

• JAR/FAR 25.857 requires a smoke or fire detector system for cargo holds
 ‣ Such systems monitor
 – directly the compartment
 – indirectly the goods loaded in containers/palettes
 ‣ Corrective actions are initiated by the cockpit crew or automatically
Transport logistic

Air freight can be a weak point

There is an interest to know

- which cargo is on board (on which location)
- specific to type information like temperature, humidity, acceleration,....
Air Freight Aspects

• Air freight increases rapidly
• Just in time delivery is a real challenge
• Air freight containers/pallets (ULDs) are packed by third parties
• Inspection time is very limited
• Transport security risk is linked to volume

In specific cases monitoring of goods within containers may contribute to security
Monitoring needs

• Customers & insurances want to know what happened to the shipment (liability issues)
• Forwarders need to increase monitoring of goods
• Security authorities expand their focus on
• Improvements maybe feasible for
 ▶ temperature sensitive goods (Vaccines / Pharmaceuticals)
 ▶ hazardous materials (HazMat)
 ▶ high valuable cargo (electronics, pharmaceuticals)

Such a monitoring needs communication between container and aircraft
Enhanced Air Freight Logistic – automatic ULD identification

Carrier

- Delivery

Airport

- Load Instruction
- Identification

Aircraft

- Load Master Station
 - Status of the Cargo compartments
 - Variance comparison of the identified/traced cargo and the load instruction

- Cargo Identification- and Tracing-System

- Network
Container Communication Interface (CCI)

• The container com-interface shall
 ‣ enable data exchange between container & aircraft
 ‣ be based on industrial standards like
 ‒ RFID (868 to 915 MHz)
 ‒ WIFI (Wireless LAN 2,4 GHz)
 ‣ have hot plug ability (auto log in)
 ‣ provide an interface to a SENSOR PLATFORM
 ‣ be furnished with a battery pack
 ‒ maybe solar assisted
Use of RFID capabilities for cool chain aspects

• If readers are installed in aircraft they can be used to:
 ‣ interrogate cargo (within the container)
 ‣ acquire data from dedicated goods
 ‣ enhance the monitoring
 ‣ set off a warning
 ‣

This could be an improvement for sensitive goods (not only for e.g. Vaccines/Pharmaceuticals)
Example:
- Sensor Platform for cool chain monitoring

Characteristics of a Temperature Monitoring Transponder Platform

- High reading range > 4 m
- Display for the indication of the active temperature and of further status information
- Low total volume
- Small battery design
- Energy saving passive interface
- Accuracy of the temperature measurement +/- 0.5 K
- Scalability of the data memory

CoolChain RFID-S Technology Platform
Example:
- Study on automated Container / Pallet Identification

Test Objectives:

- Technical feasibility for RFID based automated identification of airfreight ULDs at the cargo door area of aircrafts
- Definition of optimized position of RFID antennas and transponders

Technical concept:

RFID components (UHF - 868 MHZ):

Reader
Antenna
Transponder (passive)

Reader
Antenna
Transponder

Energy
Data (Ident.Nr.)
Example:
- Study on automated Container / Pallet Identification

Test conditions for trials:

Following parameters have been changed during the trials and tests:

- Antenna positions
- Antenna architectures (fields)
- Transponder positions
- Transponder architectures
- Transmitting power (antenna output, range: 0.6-3.0 Watt)
- ULD weight (an empty ULD suffers more vibrations than a fully loaded)
- Dry / wet transponder

Antenna positions at cargo door:
A1: Left / right side
A2: Floor of cargo door area
A3: Ceiling of cargo door area
Example:
- Study on automated Container Identification

Transponder positions on container:

TC1: Left / right side [document pocket]
TC2: Bottom side of container
TC3: Top side of container
TC4: Front / back side
Example:
- Study on automated Pallet Identification

Transponder positions on pallets

TP1: Top of pallet (fastening rail)
TP2: Bottom side of pallet
RFID location at ULD
-IATA recommended place is not always useable
Automated onboard identification of cargo can contribute to enhance of security
Benefits of RFID assisted air freight handling

- Automated tracing of goods
- Automated verification of aircraft load instruction
- Reduction of false loading
- Reduction of ground time
- Paperless data transfer
- Electronic Bill of Loading

- Wireless interface can be used to enable more services than simply RF-Identification e.g.:
 - change/update information on relevant item
 - self control / monitoring means
 - memorize what’s of interest
 - data exchange (e.g. actual temperature, history ..)
High valuable or important cargo

- High valuable Cargo needs specific attention:
 - we should know where it is
 - unexpected movements might be detected automatically

- GSM/GPS-Module
- RFID-Tag e.g. with temperature sensor
Which type of RFID maybe needed within air freight handling?
Air Freight related RFID standardisation

<table>
<thead>
<tr>
<th>Subject</th>
<th>Added Value</th>
<th>RFID Type</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Labeling</td>
<td>• EPC
• P/N & S/N
• Life Cycle Data</td>
<td>Passive</td>
<td>0.5 – 1 €</td>
</tr>
<tr>
<td>Tracking</td>
<td>Localization of ULD</td>
<td>Semi-active</td>
<td>20 €</td>
</tr>
<tr>
<td>Quality assurance</td>
<td>• Trace ability
• Sensor based data gathering (temp. humidity)</td>
<td>Active</td>
<td>50 – 200 €</td>
</tr>
<tr>
<td>ULD / Cargo Monitoring</td>
<td>Monitoring & interaction</td>
<td>Active</td>
<td>100 – 500 €</td>
</tr>
</tbody>
</table>
Outlook / Conclusion

• Introduction of a Container Communication Interface
 ‣ enables placement of sensors close to the cargo
 ‣ supports gathering of real time data
• Data exchange seems feasible in the range of
 ‣ 850 to 950 MHz (GSM Cell Phones) or
 ‣ 2,4 GHz (Wireless LAN)
• The associated Sensor Platform enables
 ‣ an enhanced cargo monitoring e.g.
 – Hazardous materials (overheat / fire)
 – Cool Chain aspects
 – Explosion prevention / protection
 – Specific to type security issues
Cargo Communication Interface

Your Turn

Questions?
This document and all information contained herein is the sole property of AIRBUS DEUTSCHLAND GmbH. No intellectual property rights are granted by the delivery of this document or the disclosure of its content. This document shall not be reproduced or disclosed to a third party without the express written consent of AIRBUS DEUTSCHLAND GmbH. This document and its content shall not be used for any purpose other than that for which it is supplied.

The statements made herein do not constitute an offer. They are based on the mentioned assumptions and are expressed in good faith. Where the supporting grounds for these statements are not shown, AIRBUS DEUTSCHLAND GmbH will be pleased to explain the basis thereof.