Aircraft Fire Sensing based on Optical Detection of Key Species

David C. Hovde, Shin-Juh Chen, and Daniel B. Oh Southwest Sciences, Inc. Santa Fe, NM

for Aircraft Systems Fire Protection Group Meeting FAA Phoenix, AZ

March 26-27, 2003

- Reduce False-Positive Smoke Alarms (~200:1)
 - Detect CO & CO₂ with Optical Absorption
 - Add Other Species (acetylene & HCN) if Warranted
 - Built-In Algorithm to Validate Smoke Alarm to Fire
- Validate Measurement & Algorithm
 - Tested at U. of Maryland Fire Lab w/ Different Fuels
 - Algorithm Testing Planned at U. Maryland
 - (Hope to) Piggyback at FAA Fire Testing Lab

Prototype Fire Sensor

Prototype Test Data

Prototype Test Data (Cont'd)

Concerns

- Optical Detection
 - Mirror Degradation (Filter)
 - Long Term Reliability (Telecom Components)
 - Measurement Location (Near Smoke Detector)
 - Orthogonal to Smoke Sensor (Algorithm Validation)
- Economics
 - Price (x4 Smoke Sensor)
 - Form Factor (x3 Smoke Sensor)
- Acceptance
 - Users (Pilots, Airlines)
 - Manufacturers (Boeing, Airbus)

Detection of Four Gases

- 3 lasers into single optical fiber
- Each laser modulated at different frequency
- Light detected on single photodiode
- DSP processor used to demodulate each laser separately
- HCN and acetylene could be detected in same spectral scan

Frequency Multiplxed Detection Data

Southwest Sciences, Inc.

Gases Accessible for TDL Measurement

Future Improvements

- Optical Measurement
 - Longer Wavelength Lasers (available now)
 - Compact Optical Cell (No mirrors)
 - Integrate Smoke Detector/Gas Sensor
 - Fiber Optic Distribution
 - Multiple Measurement Locations
 - Multiple Species Detection
- Economics
 - TDL Price will Continue to Drop
 - Longer Wavelengths Reduce Form Factor

