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PREFACE

This report was prepared by The Boeing Company
under Department of Transportation Contract DOT-FA72NA-
706 and covers work performed during June and July of
1972 by J. V. Hajari of the Structures Design Development
Group, Commercial Airplane Group, by C. K. Gunther of
the Stress Methods and Allowables Group, Commer cial Airplane
Group, and by J. G. Avery and R. J. Bristow of the Damage
Mechanisms Group, Aerospace Group.
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1.0 INTRODUCTION

1.1 General

1.2

1.3

-

Today's soclal climate has imposed conditions on air transport -
operations which were not anticipated when the preseht generation
of aircraft were concelved. The manifestation of these conditioné,
reflected by numerous hi-jacking and extortion attempts, is not
likely to subside in the forseeable future. Therefore, it is
encumbent on all those associated with air transport - airlines,
aircraft manufacturers, and regulatory agencies alike - to seek
ways to reduce, if not eliminate, this threat to the future of
air transport and its users. The Department of Transportation is
puréuing an extensive program to deal with this threat through
improved pre-boarding screening of passengers and baggage, the‘
use of sky marshals, the development of in-flight disposal of
lethal objects and investigation into the on~board bomb containment
capability of present aircraft types. It is the latter aspect to
which the study reported here is addressed.

Objective

The objective of this study was to determine the.optimum location
within a 727-100 aircraft that an explosive device could be placed
with the least damage to the structure, aircraft systems and
occupants should the device detonate while the aircraft is in
flight.

Agsumptions
The following assumptions were made for purposes of this study.

1. The airplane would be a 727-100 in a common airline mixed
class configuration.



1.k

2. The explosive device would consist of four pounds of L0

nitroglycerine-based commercial dynamite.

3. The explosive device would not detonate until the airplane
was depressurized and the device secured at the opt imum

location.

L, No special bomb handling or suppression equipment would be
on board the aircraft. '

Approach

The approach taken for conduct of this study was as follows:
1. Collect and review existing data relating to the effects

of explosive detonation on‘aircraft structure.

2. Select candidate locations considering structural strength

margin, systems vulnerability and passenger shielding.

3. Conduct analysis to predict minimum and maximum hole size

created by detonation.

L.  Conduct analysis to determine aircraft ability for continued
flight with minimum and meximum size holes in structure at

candidate locations.

5. Select optimum location from results of Step 4 and develop

recommended procedures for aircraft operation.



2.0 DATA REVIEW .
A review of exlsting methods and data for predicting the effects of
small bomb detonations within the fuselage of airplanes is given in

the following paragraphs.

2.1 Scope of Problem

Small bomb detonations within transport-type airplanes produce

massive structural damage in the vicinity of the bomb., In order

to predict the extent of this damage, methods are required for
establishing: ‘

«

2.1.1

2.1.2

1.

The pressure loadings produced by the detonation; including
the peak pressure, the total impulse and the pulse duration.
These must be known as functions of distance from the blast.

The mechanical response of the structure to large, transient
pressure loadings. The effect of the blast is to produce
large elastic/plastic deformations combined with fracture

and tearing.

The allowables for the structure under dynamic, large

-deflection loading conditions.

Blast Loadings - No experimental data ls on~hand for the

blast loadings produced by U4 1lbs. of 404 commercial dynamite

as a function of distance from the blast. However, Reference 1
defines this quantity of dynamite as the equivalent of 3.2 1bs.
of TNT, Tables are avallable, References 2 and 3 for example,
giving the resultant pressure loadings for this quantity and
type of explosive. The data includes peak overpressure,
particle velocities, mach number, reflected overpressures,

pulse time duration and decay parameter. .

Mechanical Response - There are no verified methods, as such,

for predicting the local response of airplane structure to

internal blasts. The recognition of this fact by the Air



2.1.2

Mechanical Response (cont'd)

Force has led to the recent funding of research in this éfea,
for example AF Contract F33615-72-Q-1045, "Effects of Internal
Blast on Combat Aircraft Structures". The results of this

program are not yet availableas

Computer programs are being developed for handling large
deflection, dynamic elastic/plastic response of structure.
Boeing is currently completing such a program, Reference h,
using the finite-element method. However, this program does
not, as yet, have the capability for handling the fracture

and skin.tearing portion of the problem. Based on an eval-
uation of current computer program technology for blast
analysis, this program is the most advanced available. However,
because of the fracture development mentioned above and the
limitations of this study, the use of this or any other

structural analysis computer program is not feasible.

Analysis methods based on rigid-plastic analysis have been used
for the blast response of beams, plates and shells (References
5, 6, for example). These methods are useful for predicting
plastic deformation, but do not have fracture capability.
Simply evaluated relations are available for circular plates
and beams; however, the analysis becomes far more complex for
the structural shapes required for realistic modeling of air-
craft structure. For these reasons, it was felt that the

rigid-plastic approach was not suitable for this study.

An energy approach has been described in Reference 7 and 8.
In this approach, the blast energy input to the structure is
equated to the plastic work done during deformation. The
utility of the method depends on a description‘of the primary
mode of deformation and this is not available for complex
structure under transient loading. Consequently, this method

cannot be used directly on a limited scope program.



2.1.2

2.1.3

Mechanical Response (cont'd)

Of the available analysis methods, the most suitable for this
study is an adaptastion of the "equivalent static load" (ESL)
method. Thils method is currently in use by the Air Force and
other services (Reference 9, for example) for predicting
threshold levels of structural failure to blast; The
essentials of the method are also outlined in Reference 3,

10, and other sources.

The analysis method consists of estimating a static pressufe
loading that will do the same amount of damége as the dynamic
blast loads. The estimate is based on calculating the
response of a one-degree of freedom structural system to the
given blast load. This calculation can be done very easily.
The equivalent static load can then be computed for components
or the airplane structure (e.g., skin, frames, stringers),
based on the natural frequency of these components., The

components can then be analyzed as for static loading.

The use of this method will provide a rationale for estimating
the "hole size" produced by the internal bomb explosion.
However, it has to be recognized that this method cannot
account for the many unknown aspects of the hole formation

problem, nor can any analytical method available.

Structural Allowables - Although design and ultimate strength

allowables are available for the airplane loaded under flight
conditions, there is little or no data on-hand regarding
ultimate strength of components under blast loadings. This

area will remain a source of uncertainty.



2.1.4

Empirical Methods - Empirical methods for estimating the

response of airplane structure to blast would be ideally
suited for this study; however, the available data is not

comprehensive enough to providg the complete golution,

The most suitable data on-hand is that summarized in Refer-
ence 11. These results are based on tests involving placing
charges of TNT inside airplanes of various sizes and estimat-
ing the charge levels that would result in 75% probability

of structural kill. The test vehicles were all of semi-
monocoque construction, and the tests resulted in a correlation
between fuselage size and skin thickness, and the charge size
required for catastrophic structural damage. These results

will be used for confirmation, if possible.

An additional semi-empirical method is given in Reference 12,
however, the experimental results and conditions are not
specified. This method defines critical values for peak’
pressure, impulse and pulse duration for threshold damage

conditions.



arrangements, and systems routing was made prior to selecting candidate
locations., Passenger relocation, shielding provided by passenger
accommodations equipment, minimum damage to structure and vital systems

were the primary factors considered in selecting candidate locations.

3.1 General Description *
Figure 3-1 shows a typlcal interior arrangement of a 727-100
airplane. The most common configuration 1s a mixed class with
approximately 12 first class and 96 tourist class seats, although
other configurations such as single class (up to 131 passengers);
all cargo and mixed cargo/passenger are sometimes used. Figure 3-2
and Figure 3~3 show body frame station and major fuselége com=-

ponent diagrams.

There are four electrical raceways in the right hand side upper

lobe of the alrplane. Two racewsys T-1 and T-2 are in crown area
close to the centerline of the aifplane. Raceway T-1 hasg wires for
Engine No. 2 and autopilot operatlion and T-2 has wires for Engine No.3
and galley power operation. Raceway R, just above the hatrack,
operates all the sidewall lighting and aft cargo compartment light-
ing and accessories. Raceway HH-3 through the floor beam (See

Figure 3-4) has engine No. 3 power feeders. Except for Raceway R,

all other raceways are considered essential.

Below the passenger floor are forward and aft cargo compartment,
air conditioning bay, and electrical/electronics bay in the forward
compartment. All control cables run through the floor beams as
shown in Figure 3-4. The 727-100 uses two independent systems (A
and B) to hydraulically power the flight controls for all three
axes with automatic reversion to manusl control provided for the

ailerons and elevators.

The fuel tanks are contained entirely within the wing inter-spar
section in threé main tanks. The fuel tanks are of integral
composition, except the one in the wing center section which is

within the airplane body, and is made up of bladder cells,

10
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3.2

| 3.1 General Description (cont'd)

Three fuel system plumbing lines run from rear spar, through
Section 46 floor beams to individual engines.

»
Location Selection
After a thorough review of aircraft structure, structure loads,
interior arrangements and systems (control, electrical, fuel)
routing, three candidate locations were chosen as shown in
Jigure 3~5, The rationale for choosing these locations is as
follows:

1. Body Station 500, right hand side, on outboard seat in

first class compartment (See Figure 3-6)

This location was chosen becéuse of (1) the large margin

of structure in the forward fuselage in the unpressurized
condition, (2) the absence of vital systems under the floor
on the right hand side and (3 ) the shielding provided the
rest of passenger cabin and crew compartment by galley,

lavatory and partitions.

2. Body Station 660, right hand side on mid-galley door escape
slide bustle (See Figure 3-7)

This location is considered a prime candidate because of (1)
the large reinforced cutout already existing because of the
door, (2) the ability to partially open the door to facilitate
blow out (3) the shielding provided by galley structure and
partitions and (4) the absence of vital systems under the
floor on the right hand side.

15
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STA 500 LOCATION
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FIGURE 3
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FIGURE 3-7.  MID-GALLEY DOOR LOCATION
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3.2 Location Selection (cont'd)

3. Body Station 772, right hand side, on the outboard seat
adjacent to the opened forward escape hatch. (See Figure 3-8)

This location was included for consideration because of

the possibility of providing a large, well reinforced clear
opening. Tt has the disadvantages of fuel cells in the
wing center section and lack of éhielding for the largest

part of the cabin.

Several other locations were considered but dropped for various
.reasons. A forward cargo compartment was not pursued becduse
seats would have to be moved to gain access (See Figure 3-9)
and structural damage would likély extend into critical body
bending area. All left hand locations were judged to be
unsuitable because of vital control system cables under the
floor on that side. All aft body locations were likewilse
Judged to be unsuitable because of fuel lines in the floor
structure on both sides. A ventral stair location was not
considered because of the likelihood of deactivating the
stair during flight.

19



ERGENCY ESCAPE HATCH LOCATION
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4.0 DETERMINATION OF STRUCTURAL DAMAGE

4.1 Scope of Problem
r]
The objective of this task is to estimate the size of the

structural damage caused by the bomb detonation. This estimate

is then used to determine the capability of the remaining structure
to carry flight loads.

The estimation of structural damage proceeds in two steps:

a., Estimate the overpressure loadings acting on the structure

at various distances from the detonation.

b. Estimate the response of the structure to the dynamic
overpressure loadings, including an estimation of

structural failure.

Although estimating threshold levels for structural failure
under blast loading conditions is a problem that is fairly
routine in vulnerability analysis, estimating the size of the
damage is not a routine problem, and is normally considered
intractable without supporting expefimental data for the specific
explosive and structure considered.

The reason for this is that the confidence level for predictions
of blast pressure loadings and structural response is low.
Reference 13 concludes that the state of predlctability of blast
loading 1s & factor of 2 on peak pressures and a factor of L on
loading time duration.

Thedifficultyvin predicting damage size, even when the loads are
accurately known, is a difficult problem under static loading
conditions, and ﬁhe difficulty is compounded under dynamic
loadings.
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For these reasons, the hole size predictions described in the
following sections must be regarded as engineering guesses.
Computer analysis using a dynamic elastic/plastic code, combined
with some experimental data, could*improve the confidence of the

predictions, but was not within the scope of this program.
Estimation of Blast Loadings

The 4 pounds of dynamite were assumed to be equivalent to 3.2
pounds of TNT, in accordance with the information reported in
Reference 1. The pressure loadings for TNT are tabulated in
many sources, and loadings for this study were extracted from

Reference 3.

4.2,1 Types of Pressure Loadings - The detonation of the bomb

causes a shock wave that travels radially outward from
the center of detonation. The shock wave travels at the
local speed of sound and results in a rapid increase and

decay of pressure.

The blast pressure loadings are characterized by a pesak
overpressure, a time duration, a decay shape and a total
impulse. In addition, the intensity and character.of the

blast loading changes with distance from the detonation.

As the shock wave travels through the air, the overpressure
is not direction dependant. That is, the overpressure
represents the pressure that exists at a point in space.

This free-air overpressure is called side-on overpressure.

The side-on overpressure can be obtained directly from

available tabulations.
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When the shock wave strikes a structure, however, the
pressure loading felt by the structure will be either the

reflected overpressure or the Mach stem overpressure, as

determined by the angle of ingidence between the shock

front and the structure.

For nearly "head-on" incidence, the incoming shock wave is
reflected from the surface of the structure and the super-
position of the incident and reflected waves causes a
pressure amplification on the surface. This amplified

pressure is the reflected overpressure.

As the angle of incidence is increased, however, a point

is reached such that the incident wave does not reflect,

but instead travels along the surface, forming & "Mach stem".
The pressure loading behind the Mach stem is the Mach stem

overpressure, and acts directly on the structure.

In order to simplify loading analysis, it is common practice
to transform the actual pressure pulse, which has an exponen-
tial decay, into an equivalent triangular shaped pulse having
the same total impulse as the actual pulse, This can be done
using the "decay parameter," a value that is also available

on tabulations.

Magnitude of Pressure Loadings - Magnitudes of relevant blast

loading parameters for 3.2 1lbs. of TNT are shown in Table -1,
in terms of radial distance from the detonation. These
values were obtained from Reference 3, for a spherical

charge.
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In obtaining these values, several well known scaling
parameters were used that correlate the effects of
explosions produced by differfnt charge weights. These
scaling parameters are specified below:

a, Intensity of Overpressure

i
3
NN
s 1 A a
(w/w )3
1
£y = (p/po)3 = density transmission factor
1
S (W/Wo)3 = yield factor
D_ = scaled distance, i.e., distance from

Wo# having the same intensity as

distance Da from W.#

P = air density
= air density for reference explosion
D_ = actual distance, i.e., distance from
o _
W = weight of explosive
wo = welight of reference explosive
The density transmission factor is shown in Figure 4-1 as
a function of cabin pressure. For the conditions of this

study fdrsl.
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FIGURE 4-1 Density transmission factor
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b. Time Scaling

T ~>\.TS
- y
a fd fa
-

Ta = actual time
TS = gecaled time
fd = density transmission factor
fa = transmission factor for velocity

This scaling
and positive

of sound

relation applies for both time of arrival

pulse duration. For this study:
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The actual pulse shape was transformed into an equivaleﬁt
triangular pulse having the same total impulse and time
duration. The peak pressure, impulse and time durations

for the equivalent triangular pulse are shown graphically
in Figure L4-2, *
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4.3 Estimates of Structural Damage

The estimations of structural damage were made using the following

steps:

-
1. Place the detonation center at the selected location.
2. Calculate the pressure pulse acting on interior points

of the fuselage using the methods described in the
previous section, including the determination of Mach

stem formation.

3. Convert the dynamic pressure loadings to "equivalent"
static loads, using the "ESL" technique frequently
used in vulnerability analysis for predicting structural

failure due to blast.

4, Failure was assumed to occur when the equivalent static’
Pressure load exceeded the ultimate strength capability

of skin panels.

Because of the prediction uncertainties mentioned previously,
it was decided to establish probable maximum and minimum damage
sizes. The damage estimated by using the above procedure was
taken to be a maximum, since there was no allowance made for
the energy absorption capability of interior padding, seats,

hat rack structure, pillows or blankets.

Determination of the suppression effects of these energy
absorbing items was beyond the scope of this analysis. Since
peak pressures can only be estimated within a factor of 2, as
discussed in Section L.1, it was decided that a rational
minimum damage'size would be one-half that predicted for the
maximum., This asSumption, combined with engineering judgement,

was used for this study.
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The remainder of this section describes the damage estimation pro;
cedure in more detail, and gives specific examples from the actual

calculations for illustration.

4.3.1 Pressure Pulse Calculations - Retlected and Mach stem

overpressures were calculated around the periphery of the
fuselage (within a plane passing thru the station iocation
perpendicular to the longitudinal axis of the fuselage),
and along the fuselage in the fore and aft directions at

- an elevation corresponding to the Bomb location. It ﬁas
decided that these calculations would provide adequate

insight into the pressure profiles.

The procedure consists of drawing a ray from the detonation
and measuring the angle between this ray and a tangent to the
fuselage contour at the point of intersection. This angle

is the incidence angle, 3, between the shock front and the

structure.

Critical values of Bwere tabulated previously in Table L1,
When pexceeds the critical value, a Mach stem will be formed.
When g is less than the critical value the reflected over-
pressure is used for the structural damage analysis.

Summarizing,

B < : =
Bc PM Preflec‘ted

B> B, Py =P,
where P, is the "Mach-stem overpressure," and was obtained
from the previously cited tabulations, using the‘Mach
number corresponding to the Mach stem given by
M

X
M T v——
I sing
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L.3.2

Where Mk 1s the Mach number of the incident shock wave.
Figures 4-3 and L4-L show typical calculations of this type,
based on Station 500, and somesof the calculations are

tabulated in Table L-2,

Equivalent Static ILoad Calculation - The equivalent static

load method has been described in many references, including
Reference 3.. The basic principle of the technique is to
model the structure as a one-dimensional system characterized
by its natural frequency, and to determine a static load A
that causes the same amount of deformation as the dynamic
blast load.

Figure M-S, obtained from Reference 3, presents equivalent
static loads for a ductility ratio of five. The ductility
ratio is the ratio of the total deformation at failure to
the allowable elastic deformation. A value of 5 for thié
ratio was found to be consistent with some available experi-

mental data for typical aircraft fuselage structure.

The natural period of the structure must be estimated in
order to calculate the equivalent static load. This was
done for skin panels, assuming them to be infinitely long

and simply supported on each side. The formulas employed

were:
t
f = frequency = 217,600 (0.985) >
b
and,
1l
T = F
where

frequency in cycles/second
skin thickness

panel width, i.e., distance between stiffeners

]

A typical calculation is shown in Table L-3,
- 33



7',ﬁ=1+3°,Mx=l.1+6,MI= 2.1h,P = 61 psi, T = 3L.L P46 psi .

psi-ms’

6.4kt g=50°, MX=1.67,MI=2.18,PMS_—. 6hpsi, PM.= 1.9,

/

.26',B=52°,Mx= 2.02,M_= 2.56,P =95psi,PM=58.8,

I

4,1, 8= 56°,Mx= 2.61,MI=3.15,PMS=153psi,PM= 72.5,

- ‘ \ o _ . Mach Stem
2-9_3',-ﬂ=58 ’Mx"3'6 Formetion
| =4.2k, P =205 psi,
Tp=r5
M yd
/

1,761, }460°, M =5.57,4.=7.28,
 AisT 892 psi,

d

W.L.232.5
Egﬁmom 4%
,///4/
21, 3=7A° .93 B=57° ' 6t,8=53° skin
~ W.L.208.1

hane=eTe ‘7/’/;— —\QT floor
I 2.93',p8= 61° \
)/ \

o b1, f=65° 4\
ach Stem

> §.21, B=60° Formation

L6 iyt g =51°
7.6%, B=u8°

FIGURE 4-3 Calculation of Peak
Mach Stem & Reflected
Overpressures at Sta.500
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Equivalent Static TLoad

1.0
o
@
3
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(O]
£
=
w
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0.2
0

FIGURE 4-5, Equivalent Static Load for Ductility Ratio of 5

3.5 1.0 2.0 3.0 5.0

Pulse Duration

Natural Period
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TABIE 4-3. EQUIVALENT TOAD CALCULATION

.0LO skin, 202k-T3 STA 500 UPPER SKIN
Natural Frequency: #
£ = 217,600 (0.985) J%—
b
t = .,040
b =8.5" (b°) = (8.5)° = 72.2
f = (217,600)(0.985)(.0k0) = 118.5 cps
72.2
N S | -
T=f=-1ms -8 m
4 td/T féi@tic= Pg
Distance (ms) P ox Py
7.6 1.4 0.167 0.175
6.4k 1.19 0.1h41 0.15
5.26 0.97 0.11k4 0.13
k.10 0.76 0.09 | 0.11
2.93 0.66 0.078 0.10

1.76
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4.3.3 Failure Calculations - The final step in the structural

damege estimation was to use the equivalent static pressure
loads to predict failure of skin panels. The skin failure
criteria was selected from Reference 3, and is shown in

Figure 4-6.

A preliminary calculation indicated that stiffeners would
fail in regions of extensive skin failure. In addition, it
was assumed that frames would fail within regions of reflected
overpressure. Floor failure was estimated in the same

manner, using design calculations for sandwich panels.

Figures L-7, 4-8, and L4-9 show minimum and maximum damages

in three selected locations.
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