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INTRODUCTION

Purpose

The purpose of this study was to use the fuel thickened with the
Anheuser-Busch (AB) gelling agent as asmodel; perform on it rheological
characterization, describe the pertinent parameters and set forth a
preliminary profile specification to guide future development.

Background

Since 1964, the Federal Aviation Administration has actively carried
out a research program designed to reduce the fire hazard associated with
the crash of aircraft. As a result of this continuous study, thickened
fuels were shownl to be both effective and safe. Of all the methods of
thickening, gellation with suitable agents appears to be particularly
promising.

Recent FAA sponsored research? indicated that gelled fuels, in addition
to possessing the prerequisite crash-safe properties, must be fluid enough
to drain from fuel cells without extensive modification of the aircraft fuel
system. Therefore, it is imperative that a gelled fuel be developed that
meets this criterion. The rheological properties of the fuel must be quanti-
tatively defined so that the fuels can be screened and only the best candidate
be subjected to further testing.

A few of the numerous gelling agents examined by the FAA approach the
qualifications required for safety and system compatibility. The Corn
Products Research Section of the Central Research Department of Anheuser-
Busch, Inc. has specifically developed a carbohydrate-based polymeric
gelling agent for jet fuels. Fuel containing this gelling agent has met the
preliminary NAFEC safety and rheological requirements. It has been demon-
strated to be a versatile and promising gelling agent.

The main text of the report is divided into five major sections. The
first two sections describe rheological characterizations; the third covers
the physical properties, compatibility and structure of the gelled fuels.

The measured properties are discussed and the detailed experimental procedures
are described in separate parts entitled, "Experimental Procedures." The
summary section integrates the individual findings and presents an overall
discussion of the gelled fuel. Findings of this investigation are itemized
and listed in the concluding section. ‘



RHEOLOGICAL CHARACTERIZATION - PART A

Results and Discussions

Program — A broad range of gel consistency is represented by four
selected gel samples prepared with the AB gelling agent. The broad range is
designed to permit ready interpolation of thé data to the gel which is ulti-
mately chosen. The four gel samples are identified in this section as A, B,
C and D with the gelling agent concentrations of 2.73%, 2.03%, 1.67% and
1.11%, respectively. Concentrations are expressed as weight per cent
throughout this report. Wherever possible, the gel properties are measured
at five temperature levels (~-52°C. to 52.8°C.).

Plasticity and Yield Stress ~ The gelled fuels exhibit non-Newtonian

(i.e., variable shear-stress/shear-rate ratio) and plastic behavior with a
small but definite amount of associated yield stress. The yield stresses
(Y¥) for each of the gels at various temperatures, are given in Table 1 and
illustrated in Figure 1. The data indicate that in the higher temperature
range (0-52°C.), the yield stress value of 230 + 50 dynes/cm2 is relatively
independent of temperature and concentration. However, as the temperature
drops below 0°C., the yield stress increases rapidly to approximately 2000
dynes/cmz. The reduced temperature also magnifies the influence of concen-
trations on yield stress.

Shear Rate and Shear Stress Relationship - The non-Newtonian flow

properties of the gelled fuel are demonstrated by the measurements of the
shear rate and shear stress (0 ) relationships. The shear_ rate was varied
in 10 steps, covering a range of 74 sec.”l to 12,000 sec.” ™. Figures 2, 3,
4 and 5 illustrate the relationship for each gel at several temperature
levels. Within these limits the corresponding stresses developed in the
gel ranges from 200 to 10,000 dynes/cmz. From these graphs, one may obtain
the "apparent viscosity" (#), which is the ratio of shear stress to shear
rate. The ratio is not a constant value; it is dependent on the shear rate.
As expected of non-Newtonian and thixotropic fluids, the shear stress of
these gels does not increase as rapidly at higher shear rate as at lower
shear rate. :

The data given above may be presented conveniently and usefully
as a family of straight lines which permits easy interpolation and some
degree of extrapolation. When the difference between shear stress and
yield stress ( 0 - y ) is plotted against the shear rate on a logarithmic
scale (Figures 6, 7, 8, 9), the lines are represented by the following
linear equation:é

log (O0-4¢Y) = logk + n log y (1)
where: o = shear stress
Y = yield stress
? = shear rate

k n are constants

r



TABLE 1

YIELD STRESSES AT VARIOUS TEMPERATURE AND GELLING AGENT CONCENTRATION LEVELS

T YIELD STRESSES, dynes/cm?

Concentration, Weight 7%
2.73(A) 2.03(B) 1.67(C) 1.11(D)

52.8 290 240 190 170
. 25.0 250 210 190 180
0.0 260 240 210 170
-20.7 800 600 500 380
~52.0 2200 2100 1700 1300



2000

Yield Stress, dynes/cm?

1000

-40 -20 0 20 40»

Temperature, °C.

Fig. 1 - Yield Stresses of Gels at Various Temperatures
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\

Equation (1) may also be written as:

(o -y) =ky" (2)

-

which is its more familiar form, commonly referred to in rheology as the
power law.

The data in Figures 6, 7, 8 and 9 were analyzed by the method
of least squares. The constants in Equation (1) are given in Tables 2
and 3. They hold true for the gelled fuel within the concentration range
of 1.11 to 2.73%, the temperature range of -52°C. to 53°C., and shear
rates from 75 sec.” 1 to 12,000 sec.”™l., A more detailed mathematical
analysis of the data is given in Appendix A.

While the logarithmic plots represented by Equation (1) con-
veniently relate the shear stress to shear rate under various conditions,
one finds it difficult not to speculate on the usefulness or the signifi-
cance of the slope (n) and intercept (k) of the plot (Appendix A). We
believe that these functions may aid the estimation of the flow rate of
gels in pipes.

Wohl5 had proposed an equation characterizing the flow of non-
Newtonian fluid as:

o 2
a/mk®= /oy [ ol Flogddo, (3)
0
where: Q = volumetric flow rate
R = radius of pipe
’qw‘ =  shear stress at wall of pipe
o, = shear, stress in axial direction

at radius r.

13



TABLE 2

THE TEMPERATURE AND CONCENTRATION EFFECT ON THE VALUES OF SLOPE (n)

-

SLOPE (n) x 1072

TEMP. Concentration, Weight %
°C. ELZE 3;92 }LEZ 1.11
52.8 62.0 + 2.6 57.7 + 0.7 61.9 + 4.9 49.4 + 5.3
25.0 ) 72.1 + 2.3 68.6 + 3.9 73.3 + 3.1 - 70.4 + 3.3
0.0 56.5 + 0.6 55.7 + 1.5 63.7 + 2.7 57.1 + 2.3
-20.7 65.0 + 1.1 50.5 + 2.1 58.0 + 4.9 49.0 + 5.8
-52.0 64.7 + 2.1 . 65.0 + 2.2 66.7 i 2.4 73.9 + 3.8
TABLE 3

THE TEMPERATURE AND CONCENTRATION EFFECT ON THE VALUES OF INTERCEPT (k)

TEMP. INTERCEPT, k x 107

°C. Concentration, Weight %

52.8 55.0 + 8.5 5345 + 2.4 24,5 + 12.8 63.7 + 17.7
25.0 41.1 + 7.3 35.3 + 11.9 1.5+ 9.2 2.5 + 10.1

0.0  108.1 + 5.8 95.4 + 4.8 61.8 + 7.3 55.4 + 6.9
~20.7  115.3 + 10.6 142.8 + 71.0 105.7 + 16.4 157.4 + 19.1
-52.0  138.7 + 6.5 138.6 + 7.0 132.0 + 7.5 103.6 + 11.6

14



This equation (3) can be modified (Appendix B) to allow its
application to AB gelled fuel systems.

The flow rates of Gel C at 25°C. were calculated for l-in.
and 2-in. diameter pipes and the results are shown in Figure 10. The
mathematical exercise described herein®and in Appendices A and B
exemplifies the potential application of the logarithimic plot beyond
its obvious value in stress-rate relationships.

Thixotropy — The AB gelled fuel responds quickly to shearing
action as was demonstrated in terms of the resultant shear stress
(Figure 11). The shear stress declines as the shearing action persists,
even though the rate of shear is constant. This is the phenomenon of
thixotropy, and it is a useful property because it facilitates the
transfer of gelled fuel.

In Figure 11, Gel A exhibits the greatest thixotropy while
Gel D shows the least at a temperature of 25°C. and a constant shear
rate of 525 sec.”l. The more thixotropic the gel, the longer will be
the shearing time required to reach an asymptotic shear stress value.
The time required for Gel A to reach one-half of its asymptotic shear
stress of 550 dynes was 29 seconds; the time for Gel C to reach its
final shear stress of 210 dynes was 20 sec.

This shear thinning, however, is reversible. After a short
period of rest the gels completely regain the original viscosity, as
is illustrated in Figure 12. The gels at higher concentrations recover
less rapidly than those at lesser concentrations. Gel A (2.73%)
requires 8 minutes to reach its original stress value at the shear rate
of 3.3 sec.”l; whereas Gel C requires 5 minutes. The time required to
shear thin is relatively insensitive to the shear rate.

The shear stress-shear rate relationship of the gel is depen-
dent not only upon time but also its previous shearing history. A
thixotropic system can be studied under gradually increasing and then
decreasing rate of shear without waiting for equilibrium to be reached.
The so-called hysteresis loops obtained from such measurements are
shown in Figures 13, 14, 15, 16. 1In Figure 13, as the shear rate is
gradually increased, the initial shear stress is large. When the shear
rate reaches beyond 2000 sec.‘l, the change in shear stress is nearly
constant. When the shear rate is reduced gradually, the corresponding
shear stress is significantly less than the stresses developed along
the upward path., The initial high stress reflects the structural
resistance of the solution to the shearing action. As the structure
is disrupted by the shearing, its resistance to shear becomes weaker
and hence the reduced rate of increase in stresses. The difference in
stresses between the upward and downward path indicates the extent of
structural disruption. There is much less structural disruption in
the gels of lower concentrations (Figures 15, 16) than in cases of
higher concentrations (Figures 13, 14).

15
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Fig. 12 - Stress Recovery of Gels
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Viscoelasticity - The difficulty in relating rheological measure-
ments to crash-fire safety tests has been quite apparent to investigators
for some time. Gelled fuels of similar viscosity and yield stress do
not produce similar safety scores. It is also evident that gels have
various degrees of structural coherence that significantly affect their
flow behavior, their tendency to adhere &0 the walls of containers, and
their misting pattern under impact. So far this degree of structural
coherence has eluded quantitative evaluation. We have attempted to deal
with the evaluation of this structural coherence under the rather general
term, "viscoelasticity."

A viscoelastic® substance exhibits both viscous and elastic
properties. For example, when it is subjeeted to force, it deforms con-
tintously (viscosity), but when the force is removed it tends to return
spontaneously, though not completely to its original state (elasticity).

A number of sophisticated instruments7 are available for the
measurement of viscoelasticity. 1In order to meet the contract deadline,
it was decided to carry out the preliminary study of viscoelasticity on
the available Rotovisco-Viscometer with its viscoelastic attachment.

Viscoelasticity in this case is manifested by two parameters,
the equilibrium stress (0 ) and the relaxation time (7,.). They were
arbitrarily chosen for the time being and there could be others added
latter for consideration. When an applied shear at constant rate is
suddenly terminated, the induced stress in the gel decays rapidly. The
stress does not decay to zero but to a final finite level. This is not
a commonly observed occurrence in fluids and the final stress at equi-
librium is termed the "equilibrium stress." The time required for the
stress to decay to a predetermined fraction (1/e or 36.9%) of the stress
differential (0g- O) is defined as the relaxation time. The symbol o,
stands for the steady state stress at constant shear rate just prior to
the cessation of the shearing action. Figures 17, 18, 19 and 20 depict
the viscoelastic behavior of Gel A at 10° and 40°C. Figures 21 to 23
show the influence of concentration on equilibrium stress. Equilibrium
stress varies directly with gel concentration, and has no measurable
value in gels more dilute than Gel C. The relationships of the two
viscoelastic parameters with gel concentration and temperature are
shown in Table 4 and Table 5. The equilibrium stress is dependent upon
temperature and concentration but is independent of shear rate up to a
critical value where it becomes zero.

The equilibrium stress of the gels above the critical shear
rate and temperatures is zero. Gels above these temperatures (sheared
above the critical rate) flow as viscous non-Newtonian liquids and
exhibit no viscoelasticity.

The relaxation time is a function of concentration, tempera-
ture and shear rate. In all cases where the equilibrium stress is nil,
a measurable relaxation time, e.g. 1.2 sec., was observed. This small
measurement of 1.2 sec. can be considered as some limiting constant of
the instrument.

23
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