Report No. NA-69-5

(DS-69-10)

FINAL REPORT

1-57000402

Project No. 510-002-04X

DYNAMIC TEST CRITERIA FOR AIRCRAFT SEATS

OCTOBER 1969

DEPARTMENT OF TRANSPORTATION FEDERAL AVIATION ADMINISTRATION National Aviation Facilities Experimental Center Atlantic City, New Jersey 08405 FINAL REPORT

DYNAMIC TEST CRITERIA FOR AIRCRAFT SEATS

PROJECT NO. 510-002-04X

REPORT NO. NA-69-5 REPORT NO. DS-69-10

Prepared by: DONALD W. VOYLS

for

AIRCRAFT DEVELOPMENT SERVICE

October 1969

This report is approved for general distribution. It does not necessarily reflect Federal Aviation Administration policy in all respects, and it does not, in itself, constitute a standard, specification, or regulation.

DEPARTMENT OF TRANSPORTATION Federal Aviation Administration National Aviation Facilities Experimental Center Atlantic City, New Jersey 08405

ABSTRACT

A series of static and dynamic tests of representative aircraft passenger seats was conducted. The static tests utilized the procedures of Technical Standard Orders C-22 and C-39 which embody the test standards for certifying passenger seats for commercial aircraft. The dynamic tests utilized, in part, test procedures developed specifically for this project and, in part, test procedures developed from experience in the testing of Navy aircrew seats.

A significant difference between static and dynamic test results was found, thus warranting further investigation of the validity of utilizing static tests alone for the type certification of aircraft passenger seats for a dynamic or crash load requirement. The fact that static test results, in themselves, cannot be related to crash environments is demonstrated and cited as a definite limitation of static tests. Dynamic test results are demonstrated as having the capability of being related to crash environments and are considered to be the more meaningful in defining the behavior of seat/occupant systems when subjected to crash phenomena.

Dynamic test criteria for the type certification of aircraft seats were established and used to analyze the static and dynamic test results. A relationship between the static and dynamic test load conditions was devised as part of the criteria. Relatively simple methods for dynamic testing are suggested, and the procedure for analyzing test results is presented. TABLE OF CONTENTS

	Page
ABSTRACT	iii
INTRODUCTION	1
Purpose Background	1 1
Description of Theory for Dynamic Test Criteria Test Methods and Procedures Selection of Acceptable Dynamic Test Methods Seat Strength Versus Crash Loads	2 9 15 18
DISCUSSION AND RESULTS	18
Static and Dynamic Tests Acceptable Dynamic Testing Methods Seat Sensitivity Versus Crash Loads Certification Procedure Utilizing Dynamic Tests	18 28 38 44
CONCLUSIONS	48
RECOMMENDATIONS	49
REFERENCES AND BIBLIOGRAPHY	50
APPENDIX I Glossary of Terms (2 pages)	1-1
APPENDIX II Instrumentation Summary (8 pages)	2-1
APPENDIX III Data Summary (49 pages)	3-1

Figure		Page
1	Seat/Occupant Spring-Mass System	3
2	Relationship Between Input Pulse and Reaction Force	4
3	Response Factors for a Simple Spring-Mass System Subjected to Single Pulses	5
4	Input Pulses for the Specified Response	7
5	Sensitivity Curve for the Specified Response	8
6	Seat A - Tubular Construction	10
7	Seat B - Sheet Metal Construction	11
8	Seat C - Tubular Construction - Floor/Sidewall Mounted	12
9	Typical Seat Setup for a Forward Static Test	13
10	Typical Seat Setup for a Downward Static Test	14
11	Typical Seat Test Setup on the ACED HG-1 Catapult	16
12	ACED 150-Foot Vertical Drop Tower	17
13	Sample Sensitivity Curve Relating Static Seat Strength Requirements to Crash Environment	19
14	Longitudinal Response Curve for Seat A	21
15	Vertical Response Curve for Seat A	22
16	Longitudinal Response Curve for Seat B	23
17	Vertical Response Curve for Seat B	24
18	Longitudinal Response Curve for Seat C	25
19	Vertical Response Curve for Seat C	26
20	Back View of Seat A After Vertical Dynamic Testing	27
21	Sensitivity Curve - Seat A	2 9

vii

Figure		Page
22	Sensitivity Curve - Seat B	30
23	Sensitivity Curve - Seat C	31
24	Dynamic Test Data Collected for Test No. 39	32
25	Dynamic Test Data Collected for Test No. 40	33
26	Pendulum-Type Test Facility	34
27	Inclined Plane-Type Test Facility	35
28	Catapult-Type Dynamic Test Facility	36
29	Forward Leg of Seat C Following Forward Dynamic Test	39
30	Front View of Seat A After Vertical Static Testing	40
31	Lockheed 1649A Aircraft Longitudinal Floor Accelerations	41
32	Lockheed 1649A Aircraft Vertical Floor Accelerations	42
33	Longitudinal 9-g Sensitivity Curves	43
34	Vertical 6-g Sensitivity Curves	45
35	Response and Sensitivity Curves for the Type Certification of Aircraft Seat/Lap Belt Systems	47
APPENDICE	3S	
2-1	Instrumented Leg Fittings	2-2
2-2	Load Cells to Measure Leg Attachment Vertical and Longitudinal Loads	2-3
2-3	Vertical Dynamic Test of Seat A	2-4
2-4	Lap Belt Load Link	2-5

Figure		Page
2-5	Seat Accelerometer Installation	2-6
2-6	Load Cell Installation to Measure Input Static Loads	2-8
3-1	Typical Dynamic Longitudinal Test Setup - Seat A	3-2
3-2	Test No. 5 Recorded Data	3-3
3-3	Typical Static Longitudinal Test Setup - Seat A	3-4
3-4	Static Test No. 71 Recorded Data	3-5
3-5	Seat A-1 After Test No. 3	3-7
3-6	Left Midbottom Support - Seat A-1 After Test No. 3	3-8
3-7	Seat A-5 After Static Test No. 71	3-9
3-8	Right Bottom Support - Seat A-5 After Test No. 71	3-10
3-9	Typical Static Vertical Test Setup - Seat A-6	3-13
3-10	Seat B-1 After Test No. 37	3-18
3-11	Seat B-1 Inboard Seat Belt After Test No. 37	3-19
3-12	Rear View of Seat B-1 After Test No. 37	3-20
3-13	Seat B-2 After Test No. 40	3-21
3-14	Bottom View of Seat B-2 After Test No. 40	3-22
3-15	Seat B-5 After Test No. 82 Showing That Seat Belt Attachment Failed	3-23
3-16	Front View of Seat B-5 After Test No. 82	3-24
3-17	Closeup of Seat B-5 After Test No. 82	3-25
3-18	Typical Dynamic Vertical Test Setup - Seat B	3-26
3-19	Seat B-3 After Test No. 69	3-28
3-20	Seat B-3 After Test No. 70 Showing Basic Structure Failure	3-29

Figure		Page
3-21	Rear View of Seat B-3 After Test No. 70	3-30
3-22	Bottom View of Seat B-3 After Test No. 70	3-31
3-23	Seat B-4 After Test No. 80	3-32
3-24	Seat C-1A After Test No. 55	3-33
3-25	Typical Static Longitudinal Test Setup - Seat C	3-34
3-26	Seat C-1A After Test No. 56 - Leg Failed First	3-36
3-27	Seat C-1A After Test No. 56	3-37
3-28	Seat C-2 After Test No. 61 - Leg Failed	3-38
3-29	Underside View of Seat C-2 After Test No. 61	3-39
3-30	Leg Frame of Seat C-2 After Test No. 61	3-40
3-31	Seat C-5 After Test No. 84	3-41
3-32	Rear View of Seat C-5 After Test No. 84	3-42
3-33	Leg Frame of Seat C-5 After Test No. 84	3-43
3-34	Rear View of Seat C-4 After Test No. 79	3-45
3-35	Leg Frame of Seat C-4 After Test No. 79	3-46
3-36	Seat C-6 After Static Test No. 85	3-47
3-37	Rear View of Seat C-6 After Static Test No. 85	3-48
3-38	Leg Frame of Seat C-6 After Static Test No. 85	3-49

х

LIST OF TABLES

Table

Appendix III

Page

3 - I	Seat A - Longitudinal Dynamic and Static Test Data	3-6
3-11	Seat A - Vertical Dynamic and Static Test Data	3-14
3-III	Seat B - Longitudinal Dynamic Test Data	3-16
3-IV	Seat B - Longitudinal Dynamic and Static Test Data	3-17
3-V	Seat B - Vertical Dynamic and Static Test Data	3-27
3-VI	Seat C - Longitudinal Dynamic and Static Test Data	3-35
3-VII	Seat C - Vertical Dynamic and Static Test Data	3-44

INTRODUCTION

Purpose

The purposes of the project reported herein were (1) to establish background for dynamic test criteria for the type certification of aircraft seats and restraint devices, (2) to determine test methods which demonstrate compliance with the dynamic criteria, (3) to express the present static test load requirements for aircraft seats and restraint devices specified in the Federal Aviation Regulations (FAR) in terms of the dynamic criteria, and (4) to relate the static test load requirements to an actual crash environment utilizing the dynamic criteria.

Background

FAR's 25.561 and 25.785, and Technical Standards Orders (TSO) C-22 and C-39 specify design loads for aircraft seats and restraint devices for which the aircraft occupant is to be restrained and protected even though parts of the aircraft would be damaged. These design loads are expressed in static "inertia forces" based on the combined weight of the seat and occupant, with the occupant weight taken as 170 pounds. The specified inertia forces have remained unchanged since 1957, and their values are indicated in the test specifications as 9 g's forward, 6 g's downward, 2 g's upward, and 1.5 g's sideward.

Although seats and restraint devices are designed to withstand these inertia forces, there is no way to relate the forces with the crash environments that would produce them. The dynamic test criteria establish a relationship between inertia forces and crash environments by specifying tests in terms of crash environment inputs, allowing the inertia forces to develop as short-duration response pulses as they would in an actual crash. Utilization of the dynamic test criteria, then, enables the inertia forces on the seat/occupant combination and the seat's capability of restraining the occupant to be expressed in terms of the crash phenomenon, resulting in a more realistic certification procedure.

The dynamic test criteria presented herein can also satisfy the present need for standardization in the aircraft industry in view of the fact that several airlines have for some time required dynamic testing for acceptance of aircraft seats, with the tests being conducted by the seat manufacturers. The test specifications have differed between airlines, and the test methods have differed between manufacturers.

To meet the objectives of the project, it was first necessary to establish a theoretical basis for the dynamic test criteria. The seat types to be tested were then determined along with the test methods which would yield seat response characteristics in a form compatible with the dynamic test theory. Finally, it was necessary to utilize existing crash environment data to relate the results of the dynamic tests with actual crash severity. Description of Theory for Dynamic Test Criteria: In a static test of a seat, the specified inertia force for the seat/occupant combination provide the input to the seat and are applied at the center of gravity of the seat/occupant combination. The vertical seat leg reactions are a measure of the response of the seat and are directly proportional to the input, or inertia force, from which they can be calculated.

In a dynamic test, the input is the acceleration-time pulse of the sled on which the seat with occupant (dummy) is mounted. An actual crash environment is simulated where the input is the accelerationtime pulse of the aircraft floor in the vicinity of the seat, and the seat/occupant combination is free to respond as a spring-mass system (Figure 1). The vertical seat leg reactions are a measure of the response as they were in the static test. Likewise, the effective inertia force remains proportional to the reactions, but in the dynamic test becomes part of the response and can be calculated from the measured reactions. The direct proportionality between the reactions and the input holds for the dynamic test, as it did for the static test, provided the input is of long duration (Figure 2a). If the input is of short duration, as it is for typical crash environments, the reactions will lag the input and have peak values lower than those indicated by the long-term proportionality (Figure 2b).

Static tests can be related to dynamic tests by utilizing the response level (vertical seat leg reaction level) as a parameter. For a given seat, lap belt, occupant weight, input direction, and peak seat leg reaction level, there exists one static input (inertia force) and an infinite number of dynamic inputs (acceleration-time pulses) which will induce the given peak seat leg reaction level. Since there are an infinite number of dynamic inputs, they can be expressed as a curve, called a sensitivity curve, provided an empirical relationship can be established between the dynamic inputs and the peak seat leg reaction level and provided the dynamic inputs can be expressed in terms of two variables, such as velocity change and average acceleration.

Figure 3 shows a variety of input acceleration-time pulses and their corresponding response curves for a given seat, lap belt, occupant weight and input direction. These response curves can be obtained empirically during the type certification testing of the seat and are the means by which the dynamic inputs and the peak vertical seat leg reaction level can be related. Each seat test produces one point on the curve. Other points are obtained by testing the seat with input pulses of different magnitudes. The response factor C, for each test, can be calculated as follows:

$$C = \frac{g_e}{\bar{G}}$$

(1)

FIG. 1 SEAT/OCCUPANT SPRING-MASS SYSTEM

FIG. 3 RESPONSE FACTORS FOR A SIMPLE SPRING-MASS SYSTEM SUBJECTED TO SINGLE PULSES

Where g_e is the effective peak inertia force on the seat/ occupant combination calculated from the measured peak vertical seat leg reactions, and \bar{G} is the average acceleration of the input accelerationtime pulse calculated from the measured pulse as follows:

$$\overline{G} = \frac{\Delta \vee}{g \times t_n}$$
(2)

Where g is the gravitational constant, t_n is the measured pulse duration, and $\Delta \vee$ is the velocity change of the measured pulse obtained by calculating the area under the pulse shape:

$$\Delta V = \int f(G) dt$$
⁽³⁾

The variables velocity change and average acceleration ($\bigtriangleup \lor$ and $\bar{G})$ describe an input acceleration-time pulse and can be used to generate sensitivity curves that define an infinite variety of input acceleration-time pulses which induce, or are sensitive to, a given peak response level in the seat (vertical seat leg reaction level) (Figures 4 and 5). Points on sensitivity curves can be calculated from response curves by assuming a constant value for ge, Equation (1), which corresponds to the desired peak response level in the seat, and calculating the corresponding values of \bar{G} and $\Delta \vee$, Equations (1) and (2), for each assumed value of t_n . If the peak response level selected corresponds to the seat leg reaction intensities induced by the standard static test prescribed in the FAR's, any point on the resulting sensitivity curve defines an input acceleration-time pulse which converts the present static test into a dynamic test. The derivation, application, and limitations of the sensitivity curve technique are given in References 1 and 2 and will not be discussed in this report.

It can be seen from Figure 3 that the response curve is a function of the shape of the input acceleration-time pulses that produce it. If, in a given investigation, the input pulses are of the same general shape, as was obtained in this investigation including the results in Reference 3, one response curve will sufficiently define the relationship between the input pulses and the peak response level for each seat and loading direction, thus considerably simplifying the dynamic method.

To use this technique to express the present Federal Aviation Administration (FAA) static test load requirements in terms of dynamic criteria, it was necessary to determine the response characteristics of a representative number of aircraft seat/occupant systems to both statically and dynamically applied loads.

FIG. 4 INPUT PULSES FOR THE SPECIFIED RESPONSE

Three different types of seats, designated as A, B, and C, were selected to represent the majority of equipment being used by the airlines. All of the seats were three-place tourist class, but differed in construction. Seat A was of tubular construction, floor-mounted; Seat B was of sheet metal construction, floor-mounted; and Seat C was of tubular construction, floor/sidewall mounted (Figures 6, 7, and 8).

The seats were instrumented to measure the data necessary to establish dynamic seat test criteria comparable to the present FAA static test load requirements. It should be noted that these tests were not conducted for the purpose of certifying any particular aircraft seat or to compare static testing with dynamic testing per se. The seat installations on the test facilities simulated, as near as practical, the seat installation in an aircraft, but no attempt was made to simulate the aircraft floor structure because of the difference in the floor construction from aircraft to aircraft. The seat tests were limited to the forward and downward directions only, because of the cost of the test specimens and because these are the most common seat loading conditions which occur in an airplane crash. This, however, did not limit the technique to these particular cases.

Test Methods and Procedures: The static tests were conducted in accordance with the present FAA regulations at the National Aviation Facilities Experimental Center (NAFEC). These tests were conducted to provide load and failure data that could be compared with similar data obtained from the dynamic seat tests. Similarities and differences between the two means of testing were thus noted. The seats were attached to a test stand using instrumented attachment fittings. Body blocks, weighing 170 pounds, were positioned and secured in each seating place with standard airline seat belts. Loads as specified in TSO C-39 were applied to each body block simultaneously by means of hydraulic cylinders. An electrically driven pump supplied the pressure to the hydraulic cylinders, and the load was regulated by a control valve housed in a console. Typical setup positions are shown in Figures 9 and 10.

The input load supplied by the hydraulic cylinders, the seat belt tension, and the reaction forces of the seat attachments were recorded by two oscillographs. Motion picture cameras were positioned to photograph the test from various angles. Time correlation between the cameras and the oscillograph was used. A complete instrumentation description of the static tests is contained in Appendix II.

The horizontal and vertical dynamic tests were conducted under an agreement with the Aerospace Crew Equipment Department (ACED) located at the Naval Air Development Center, Philadelphia, Pennsylvania. Under this agreement, the seats were subjected to several nondestructive dynamic tests where the velocity change was held constant while the average acceleration was varied. The seats were again tested holding the

FIG. 6 SEAT A - TUBULAR CONSTRUCTION

FIG. 7 SEAT B - SHEET METAL CONSTRUCTION

SEAT C - TUBULAR CONSTRUCTION - FLOOR/SIDEWALL MOUNTED FIG. 8

FIG. 9 TYPICAL SEAT SETUP FOR A FORWARD STATIC TEST

FIG. 10 TYPICAL SEAT SETUP FOR A DOWNWARD STATIC TEST

average acceleration constant and varying the velocity change. Finally each seat was tested, increasing either the velocity change or average acceleration, until the seat was damaged.

The horizontal tests of Seats A, B, and C and vertical tests of Seat A were conducted on the ACED Horizontal Linear Accelerator. This facility is a hydraulically controlled, pneumatically driven catapult device incorporating a test sled and 386 feet of track. The seats, facing opposite to the direction of acceleration, were mounted to the sled by means of instrumented attachment fittings. Instrumented anthropomorphic dummies, each weighing 170 pounds, were secured in each seating place with standard airline seat belts. Typical test arrangements are shown in Figures 11 and 2-3.

The sled was accelerated by a piston which receives its energy from the expansion of a fixed air mass entrapped in an accumulator. The sled, seat, and dummy accelerations, seat belt tension, and the reaction forces of the seat/floor attachments were transmitted by direct line from the sled and recorded by two oscillographs during the acceleration stroke. Motion picture cameras were positioned on and around the sled to photograph the tests from various angles. A complete instrumentation description of these dynamic tests is contained in Appendix II.

The vertical dynamic tests for Seats B and C were conducted on the ACED 150-Foot Vertical Drop Tower (Figure 12). This facility is a 150-foot tower incorporating a 10- by 10-foot test car which can be dropped from any height up to 112 feet and is arrested by metal straps. Mounting techniques similar to those used on the catapult were incoporated for the installation of the seats on the drop tower test car. Again, anthropomorphic dummies were secured in each seating place with standard airline seat belts.

The car was raised to the desired height then dropped and arrested by the controlled bending of the metal straps. The sled, seat, and dummy accelerations, seat belt tension, and the reaction forces of the seat attachments were transmitted by telemetry to a ground station and recorded on magnetic tape. The tests were photographed from various angles by motion picture cameras mounted on and around the test facility. Refer to Appendix II for instrumentation details of these tests.

Selection of the Acceptable Dynamic Test Methods: To determine methods of testing aircraft seats and occupant restraint devices to show compliance with dynamic seat test criteria, a study was made of existing seat test facilities, both static and dynamic. Since seat testing is primarily conducted by the manufacturer, consideration had to be given to the amount, complexity, and cost of the test equipment and facilities required to certify an aircraft seat under dynamic conditions.

FIG. 12 ACED 150-FOOT VERTICAL DROP TOWER

Visits were made to airlines, seat manufacturers, airframe manufacturers, and government test facilities to study the existing static and dynamic seat test requirements and procedures. A variety of test reports and documents was obtained and reviewed, and is contained in the Bibliography.

Seat Strength Versus Crash Loads: The measure of an aircraft seat's capability to restrain its occupant is the maximum load the seat can withstand without failing. Presently, the crash load requirement specifies the strength of a seat in terms of statically applied inertia loads. Unfortunately, an airplane crash is a dynamic phenomenon with a variety of loading conditions which cannot be exactly defined or reproduced by static loading.

By expressing the present FAA crash load requirements in terms of dynamic criteria, a comparison can be made between actual aircraft crash inputs and the present seat strength requirements. This was accomplished by calculating and plotting the sensitivity curves for each seat type and input direction based on the static test load response level and plotting, on the same graph, acceleration-time inputs of the aircraft floor produced in an actual aircraft crash. If all of the data points plotted from the aircraft crash test lie to the left and below the sensitivity curve of a particular seat, the present crash load requirement would be adequate for that particular seat in the given crash. However, if any of the points lie to the right and above the sensitivity curve for a particular seat, the present crash load requirement would not be adequate, since the existing loads required to certify the seat would have been exceeded (Figure 13). This assumes, of course, that all of the dynamically applied inputs used from the actual aircraft crash test were below those that would cause the human tolerance of the seat occupant restrained by a lap belt only to be exceeded.

DISCUSSION AND RESULTS

Static and Dynamic Tests

Seventy-four dynamic tests and nine static tests were conducted to establish dynamic seat test criteria.

To use the sensitivity curve approach, it was first necessary to define the response characteristics of each seat/occupant, spring-mass system in both the longitudinal and vertical directions. Knowing the response characteristics for each system, a sensitivity curve was established (for each direction) that represented the applied dynamic inputs that produced the same peak seat leg reaction level as did the FAA-required static test load.

FIG. 13 SAMPLE SENSITIVITY CURVE RELATING STATIC SEAT STRENGTH REQUIREMENTS TO CRASH ENVIRONMENT

The spring response characteristics of each seat were defined in terms of the effective peak inertia force on the seat/occupant combination, ge, and the average acceleration of the input acceleration-time pulse, \bar{G} , and were expressed as response factor C. Dynamic response curves were plotted for each seat/occupant system in terms of the response factor, C, versus the input acceleration-time pulse duration, t_n , whereas in Equation (1), Page 2:

 $C = \frac{\text{Effective Peak Inertia Force}}{\text{Effective Weight* X } \overline{G}} = \frac{\text{Wt x } g_e}{\text{Wt x } \overline{G}} = \frac{g_e}{\overline{G}}$

and where the effective peak inertia force was calculated from the recorded reaction loads. Examination of these response curves, shown in Figures 14 through 19, indicates that each seat has different spring characteristics and that the spring characteristics can change with loading history; i.e., response level. This was most evident in the vertical dynamic tests of Seat A where the anthropomorphic dummy bottomed out on the aft stress tube (Figures 15 and 20). Seat C, because of its unique energy-absorbing design, established two longitudinal response curves as shown in Figure 18.

To derive the sensitivity curves for each seat comparable to the present static load requirements, the values of \bar{G} and $\Delta \vee$ were calculated for a specified statically applied load; i.e., 9 g's forward, using the respective response curves for each seat to determine the appropriate response factor C.

To calculate \overline{G} , Equation (1) was expressed as:

$$\overline{G} = \frac{g_e}{C}$$

where C is determined drom the response curve for an arbitrarily selected pulse duration, t_n . The velocity change corresponding to the same duration, t_n , was then determined from Equation (3), Page 6:

$$\Delta \gamma = \bar{G} \times g \times t_n$$

* Effective weight is the weight of the seat plus that weight of the anthropomorphic dummies on the seat. In some cases, the dummies' legs were partially supported by the floor, and the effective weight was correspondingly reduced.

FIG. 14 LONGITUDINAL RESPONSE CURVE FOR SEAT A

FIG. 15 VERTICAL RESPONSE CURVE FOR SEAT A

FIG. 16 LONGITUDINAL RESPONSE CURVE FOR SEAT B

FIG. 17 VERTICAL RESPONSE CURVE FOR SEAT B

 $\mathbf{24}$

FIG. 18 LONGITUDINAL RESPONSE CURVE FOR SEAT C

FIG. 19 VERTICAL RESPONSE CURVE FOR SEAT C

ij,

FIG. 20 BACK VIEW OF SEAT A AFTER VERTICAL DYNAMIC TESTING
The sensitivity curves derived for each seat describe the input acceleration-time pulses which induce the same peak seat leg reaction level as the applied static loads specified in the FAR's. Inspection of Figures 21, 22, and 23 shows clearly that seats certified for the same applied static loads responded quite differently to the same dynamic inputs. This is evident since the spring characteristics of each seat differ as previously mentioned.

Figures 24 and 25 are examples of the data collected from the dynamic tests and demonstrate the value of the sensitivity curve. Note that \overline{G} for Tests 39 and 40 are nearly equal; however, the seat failed during the latter test. This demonstrates how the velocity change affects the loading on the seat. All of the data used in this reported are contained in Appendix III. Data Summary.

Acceptable Dynamic Testing Methods

Dynamic test methods and instrumentation need not be elaborate. The basic test facility would only require a means of accelerating the test article to the specified velocity, a means of decelerating it to obtain the specified acceleration pulse shape and acceleration average, and a means of recording the necessary input and response variables.

The methods of obtaining the desired velocity for the forward and sideward seat tests could range from the use of a simple pendulum or an inclined plane, to the more complex catapults and rocket sleds (Figures 26, 27, and 28). The downward tests, for the best results, were found to be limited to the use of a drop tower. Adequate deceleration can be obtained by the use of shock absorbers, arresting cables, or any energy-absorbing technique which will provide the desired average acceleration and acceleration pulse shape.

Ideally, the instrumentation of the input would be a continuous acceleration-time trace throughout the deceleration or impact cycle. This can be achieved by utilizing one accelerometer, mounted on the test sled, and recording on an oscillograph with timing. The pulse shape can readily be determined, and the three input variables, velocity change, average acceleration, and pulse duration can readily be calculated, Equations (2) and (3). Once confidence can be established in the repeatability of the input pulse shape, the instrumentation can be further simplified to any means of accurately obtaining any two of the three input variables. For example, the velocity change could be reduced to some means of obtaining the velocity just prior to impact. This velocity would represent the velocity change if the seat/occupant system comes to rest at the end of the impact cycle.

FIG. 21 SENSITIVITY CURVE - SEAT A

FIG, 22 SENSITIVITY CURVE - SEAT B

FIG. 23

SENSITIVITY CURVE - SEAT C

NOTE - NOT TO SCALE

FIG. 26 PENDULUM-TYPE TEST FACILITY

FIG. 27 INCLINED PLANE-TYPE TEST FACILITY

FIG. 28 CATAPULT-TYPE DYNAMIC TEST FACILITY

Instrumentation for the response of the seat/occupant system involves the recording of only the peak seat leg reactions. Continuous traces of the reactions throughout the deceleration cycle are not required. Peak reactions are required for all four legs in the downward and upward tests. For the forward and sideward tests, peak reactions are required for only the two legs subjected to tension. The tension legs are selected to minimize the random effect that occupant rebound may have on the response characteristics of the seat/occupant system. Occupant rebound is otherwise important in the evaluation of human survivability, ultimate damage to the seat, and the restraint capabilities of the seat. The tension legs are the two aft legs for the forward tests, and the aft leg and forward leg on the side opposite to the direction of the inertia force for the sideward tests.

An acceptable method of recording input data would be the use of high-speed photography. This technique would probably be more desirable to the seat manufacturer since it would provide him with a visual account of the test, along with the required data, using a minimum amount of equipment. For this method to be acceptable, time and the required distances must be recorded on the film.

In conducting a dynamic test, the test setup should be similar to that used in the test portion of this project with the exception of the elaborate instrumentation. The seat should be mounted to a rigid test bed using the same tiedowns (track and floor fittings) planned for the seat installation in operational aircraft. A rigid test bed is recommended in lieu of the simulated aircraft floor structure for several reasons:

1. Even though it would be desirable, it is doubtful whether or not the structural response of an aircraft floor could be simulated since such a small portion is required for the seat test installation.

2. The floor response characteristics will vary from aircraft to aircraft and from seat location to seat location in any given aircraft. For example, the transverse beams which support the seat tracks in one aircraft have a spacing of 20 inches. The seat spacing used by most airlines is 34 inches. Since 20 is not a multiple of 34, it is obvious that some seats will be mounted directly over the transverse beams providing a comparatively more rigid installation than those seats straddling the beams.

3. A rigid floor structure will usually create the most severe test condition for a seat and will insure test consistency for better seat evaluation.

The use of anthropomorphic dummies was found to provide more realistic test results because their response and seat pan impression were more representative of that of a human than the body blocks prescribed in the present FAA requirements (TSO-C-39). The most representative human response simulation available is necessary to

accurately evaluate a seat. It was found during the many dynamic tests conducted in this project that many of the forces experienced by the seats were not considered in the initial seat design. For example, a forward seat leg attachment came loose from the floor track due to the dummies' rebound from the initial acceleration inducing a tension force on the attachment (Figure 29). Since all the test conditions for forward facing seats prescribed in the FAR, with the exception of the sideward and upward loads which are comparatively low, places the front legs in compression, it is logical, therefore, that any sizeable tension load in the forward leg could be overlooked.

Another condition which can best be evaluated by use of an anthropomorphic dummy is the possibility of the seat occupant "bottoming out" on the seat's basic frame. Many back injuries have been experienced in aircraft accidents in which high sink rates or vertical decelerations have caused the seat occupant to bottom out on the seat structure. This is especially true of crew members whose seats were mounted on a pedestal. The anthropomorphic dummy provides a more realistic seat pan impression and provides more accurate seat load distribution. The body blocks presently specified have a large seat imprint. Examination of Figures 20 and 30 shows the difference between the results of tests using dummies and those using body blocks.

Seat Sensitivity Versus Crash Loads

Having established sensitivity curves for Seats A, B, and C comparable to the present FAA static crash load requirements, a comparison of these requirements was made with actual airplane crash inputs and the realism of the present seat strength requirements determined.

The actual crash inputs used for the comparison were those taken from the crash test of a Lockheed 1649A aircraft. The data and a detailed description of the test are reported on in Reference 3. The data used in this report were those longitudinal and vertical accelerationtime histories measured at Fuselage Stations (FS) 195 and 685 when the aircraft impacted a 6° and 20° slope (Figures 31 and 32).

The most severe longitudinal acceleration-time pulse for each impact was reduced to terms of velocity change and average acceleration. These quantities were then plotted on a composite of each seat's sensitivity curve comparable to a 9-g forward static load. Inspection of the composite plot which is shown in Figure 33 indicates that the present crash load test requirement was not adequate in this crash for most type-certified seats had they been mounted in the crew compartment area, FS 195. However, the requirement was definitely adequate for such seats mounted at the aircraft's center of gravity, FS 685, and aft during the impact with both the 6° and 20° slopes. Although the horizontal floor acceleration obtained

FIG. 29 FORWARD LEG OF SEAT C FOLLOWING FORWARD DYNAMIC TEST

FIG. 30 FRONT VIEW OF SEAT A AFTER VERTICAL STATIC TESTING

FIG. 32 LOCKHEED 1649A AIRCRAFT VERTICAL FLOOR ACCELERATIONS

FIG. 33 LONGITUDINAL 9-g SENSITIVITY CURVES

at FS 460 was not analyzed, the fact that a Seat A configuration containing dummy passengers and located at FS 417 did not fail horizontally indicated that the present requirement was probably adequate for type-certified seats had they been mounted anywhere a few feet aft of FS 380 where a complete fuselage break occurred. It should be noted that the velocity change and average acceleration determined from the acceleration-time history, measured on the crew compartment floor, FS 195, during the aircraft's impact with the 6° slope, fell below the sensitivity curves (safe region) for Seats A and C, but above and to the right of the sensitivity curve (failure region) for Seat B. This demonstrates the inadequacy of the present static crash load test requirements to define a consistent level of safety for the crash environment, since all of the seats used in the project either met or exceed the test requirements for certification.

Similarly, a composite was made of velocity changes and average accelerations, determined from the vertical acceleration-time histories recorded during the aircraft's impact with the 6° and 20° slopes, and each seat's sensitivity curve comparable to a 6-g downward static load (Figure 34). Inspection of this composite shows that the present crash load test requirement for this condition was only adequate for Seat A, mounted at the aircraft's center of gravity and aft during the aircraft's impact with the 20° slope. The inadequacy of the present crash load test requirement in defining a consistent level of safety for an aircraft crash was again demonstrated, since the velocity change and average acceleration determined from the acceleration-time history measured at the center of gravity during the aircraft's impact with the 20° slope was in the safe region for Seat A, but in the failure region for Seats B and C.

Certification Procedure Utilizing Dynamic Tests

The dynamic test methods should provide the response characteristics of a seat and restraint device in terms of the response curves, and, in the absence of sufficient human survivability data, the present static inertia force requirements should be selected as the peak response level parameters with which the sensitivity curves can be analytically generated from the response curves. The sensitivity curves will define the maximum crash severity level for each input direction at which the occupant can be successfully restrained. At least one test should be performed in each direction for which the seat and restraint device are subjected to the maximum crash severity level. The occupant should be an anthropomorphic dummy equal in weight to the present occupant weight requirement for the static tests (170 pounds).

The test methods should be such that the response curves reflect the effect of the parameters: input pulse shape and response level.

FIG. 34 VERTICAL 6-g SENSITIVITY CURVES

Pulse shapes approximating those encountered in actual crash environments, Reference 3, should be used, and tests producing response levels close to the peak response level requirements should ultimately determine the response curves.

In order to embody the above recommendations, the certification test procedure for each seat/lap belt combination for each input direction should be as follows:

1. Utilizing one seat and lap belt, obtain a response curve using inputs which induce peak response levels within the elastic range of the seat/lap belt system. About five tests are required (Figure 35a). The seat and lap belt can be utilized for additional testing.

2. Generate an approximate sensitivity curve for the peak response level requirement (Figure 35b). Select two inputs each at one of the "asymptote" locations on the sensitivity curve (Figure 35c), and, using two different seats and lap belts, perform two more tests.

3. Permanent deformation characteristics of the seat/lap belt system will probably be noted causing the two additional points to fall off the previously determined response curve (Figure 35d).

4. Adjust the response curve moving the upper portion parallel to itself so that the two points are now on the curve (Figure 35d).

5. Generate a final corrected sensitivity curve from the adjusted response curve for the peak response level requirement (Figure 35e).

6. If the seat leg reaction data from the last two tests indicate that the peak response level requirement had not been reached or exceeded, retest one of the seats at one of the asymptote locations on the corrected sensitivity curve (Figure 35f). If successful restraint of the occupant cannot be obtained, perform the test on a new and previously untested seat and lap belt. Successful restraint of the occupant during the final test together with a documentation of the response and sensitivity curves will certify the seat.

CONCLUSIONS

Based on an evaluation of the methods, criteria, and results of both static and dynamic tests of aircraft passenger seats, it is concluded that:

1. Static testing for the type certification of aircraft seats and restraint devices, as specified in the Federal Aviation Regulations and the Technical Standards Orders, cannot of itself be related to crash environments, and, consequently, static test requirements do not correspond to a consistent level of crash severity.

2. Dynamic testing for the type certification of aircraft seats and restraint devices, as governed by the dynamic test criteria established in this report, can be related to crash environments; therefore, dynamic test requirements can be specified in terms of crash severity.

3. Dynamic test methods which demonstrate compliance with dynamic criteria provide a more definitive simulation of the mechanical behavior of the seat/occupant system when subjected to the crash environment. Acceleration-time pulses at the level of the seat leg attachments provide the crash environment inputs allowing the seat/ occupant system (seat-anthropomorphic dummy) to respond as a springmass system, with the dummy capable of contributing secondary responses such as the bottoming out of the occupant on the seat structure and the reversing of inertia loads due to occupant rebound.

4. Dynamic test methods can be kept relatively simple requiring only basic test facilities, equipment, and instrumentation. The instrumentation should provide the seat leg reaction peaks (peak response level) and any two of the three input variables: velocity change, average acceleration and pulse duration.

RECOMMENDATIONS

Based on an evaluation of the dynamic test criteria of aircraft passenger seats, it is recommended that:

1. Dynamic testing in accordance with the criteria and procedure established in this report be considered for the type certification of aircraft seats and restraint devices.

2. Additional data be obtained from a study of the crash test, Reference 3. Data are available for further studies of crash environment severity, crash environment input pulse shapes, and response characteristics of seat/occupant systems when subjected to crash environments.

3. Further effort be expended to establish the applicability of the dynamic test criteria and procedure to the certification of other cabin components such as litters, pallets, oxygen bottles, galleys, etc.

4. Ideally, dynamic test criteria and certification procedures for aircraft seats and restraint devices be such that the seat and restraint device, of necessity, be designed with response characteristics that would enable the crash environment severity, which produces the human tolerance response pulse on the occupant, to be a maximum. The absence of sufficient data on human tolerance of seat occupants restrained by lap belt only precludes the possibility of establishing such criteria at the present time.

APPENDIX I

GLOSSARY OF TERMS

This Appendix is provided to define terms used in this report

- C = response factor = g_e/\bar{G}
- \mathbf{F} = force in pounds
- $g = gravitational constant in ft/sec^2$ or units of inertia force based on multiple of W_{+}
- g_d = dummy pelvic acceleration
- ge = effective peak inertia force in g's
- $g_s = seat$ acceleration
- G = average acceleration of input acceleration time pulse in g's $\frac{\Delta V}{g t_n}$
- 1 = distance between the front and rear seat legs, at the attachments. in inches
- L = distance from the seat leg attachment to the center of gravity of the seat occupant combination in inches
- $M = mass in pounds sec^2/ft.$
- R = reaction force in pounds
- R_A = rear leg peak reaction force in pounds
- R_F = front leg peak reaction force in pounds
- s = distance from the seat occupant combination's center of gravity to the point about which the moments are taken in inches
- S = longitudinal peak shear load at the seat attachments in pounds

t = time in sec

- t_n = input acceleration time pulse duration in sec
- V = velocity in ft/sec
- ΔV = change in velocity in ft/sec

1-1

 W_d = effective weight of the seat occupant in pounds. The effective weight is that weight which is acting on the seat. In some cases the legs of the seat occupants were supported by the floor.

 $W_s =$ weight of the seat in pounds

 W_t = total effective weight in pounds W_d + W_s

APPENDIX II

Instrumentation Summary

This appendix contains descriptions of the sensing transducers, their locations and the equipment used to record the test data.

To measure the seat reaction forces (R) the standard leg fittings were replaced by enlarged studs in order to allow the application of strain gages to this relatively small area (Figure 2-1). Two Budd, Model EC6-124-350, Strain Gages were cemented to each stud in such a manner as to eliminate bending forces which might be introduced under the test conditions. Dummy gages to insure temperature compensation of the bridge circuit were not used because of the lack of available space on the stud. However, the gage material was of a "selected melt" with an adjusted temperature coefficient for minimum response to temperature change and was bonded to the steel used to manufacture these studs. Therefore, the bridge circuits were completed with 1 percent wire-wound precision 350 ohm resistors. It should also be noted that temperature compensation of these bridges was not of the utmost importance in tests of this nature since the load was applied dynamically; i.e., over a short-pulse duration of approximately 100 milliseconds.

The studs measuring the aft leg reaction forces on Seat B were replaced by two BLH, Model U-1, SR-4 Load Cells with a range of 5,000 pounds for the dynamic vertical test. This was done to reduce the total number of data channels recorded. The same make and model load cells were used to measure the longitudinal shear forces (V) at the seat attachments (Figure 2-2). The two shear-force channels were omitted in Tests 14 to 20, inclusive, because of the change in the seat's position (Figure 2-3). Lap belt forces (T) were measured by means of load links, also strain-gaged with Budd, Model ED6-124-350, Strain Gages (Figure 2-4). Complete bridges were cemented on these links since the space available was ample. Thus, these links were temperature-compensated with "dummy gages," as well as being compensated with the proper selection of gage to metal temperature coefficient. Bending is electrically compensated by the application of "back-to-back" gages. In addition, self-alignment was achieved by attaching the links with flexible cables on both ends to the seat attachment location. Seat accelerations (gs) were measured with a CEC, Type 4-202, Strain Gage Accelerometer on the vertical seat axis. The mounting bracket was attached to one of the seat braces (Figure 2-5). The dummy accelerations of the anthropomorphic dummy (g_d) were also measured with CEC. Type 4-202. Strain Gage Accelerometers mounted with respect to the dummy's vertical (spinal) and longitudinal axis, respectively. Pelvic location of the two transducers is approximately $4\frac{1}{4}$ inches from the back, and $10\frac{1}{2}$ inches from the buttock, and centered laterally.

FIG. 2-1 INSTRUMENTED LEG FITTINGS

2-4

The longitudinal sled acceleration (G_h) of the horizontal accelerator was measured with a CEC, 4-202, Strain Gage Accelerometer mounted at a location close to the piston attachment. Sled final velocity was supplied by measuring the time required for the sled to travel an interval of 6 inches at the end of the required power stroke and recorded on an HP 522B Electronic Counter.

Sled displacement over the variable power stroke is measured by passing an Electro-Products, Model 3010, Magnetic Pickup over a series of sharp metal surfaces spaced according to a set pattern. The first group of pulses are spaced at one-half inch intervals followed by a 2-inch "group separation" interval, followed by a group of pulses spaced at 1-inch intervals. The number of pulses seen on the record for the first group will be dependent upon the length of the power stroke. This displacement trace is recorded on both oscillograph records for each test and, thus, can be used as a reference trace for time correlation.

The vertical acceleration (G $_V$) of the drop tower test car was measured with a CEC, 4-202, Accelerometer mounted near the center of the car.

The static test input loads (F) were measured with three BLH, Model U-3G2SP-4, Loads Cells rated at 5,000 pounds each. The load cells were attached between the end of the hydraulic cyclinder pistons and the body blocks (Figure 2-6). A steel cable was used to attach the load cells to the body blocks to eliminate binding due to seat bending.

The data sensed by the transducers at the Horizontal Accelerator Facility were transmitted by a direct-wire system to two Honeywell Visicorder Oscillographs, Models 1508 and 1012. The data were recorded on direct-wire light sensitivity paper which was later photographed for presentation in this report (Appendix III).

Telemetry was used to transmit the data measured at the Drop Tower Facility to a ground station located in the adjacent building. The data were transmitted in the Inter-Range Instrumentation Group (IRIG) format, using frequency bands 7 through 18, and recorded on a Precision Instrument Tape Recorder, Model PS207A. The tape was then played back through 12 DCS-DFG-3 Discriminators and recorded on a Honeywell Oscillograph at the Horizontal Accelerator Facility.

The data measured during the static tests were transmitted by a direct-wire system to two CEC Oscillographs, Model 5-125. The data were recorded on direct-wire light sensitive paper.

FIG. 2-6 LOAD CELL INSTALLATION TO MEASURE INPUT STATIC LOADS

APPENDIX III

Data Summary

This appendix contains the data collected in the test phases of the project. These data are presented in both oscillogram and tabulated form. Also included are examples of how the data were used in deriving the response and sensitivity curves for the three types of seats tested. These three types were designated as Seats A, B, and C.

Seat A: Seat A was a three-place, floor-mounted, tubular-constructed seat and is shown in Figure 6 of this report. Five of these seats were tested to provide the data necessary to determine the respective longitudinal and vertical response curves.

Tests Numbers 1 through 10 were longitudinal acceleration tests with the seat and dummy facing to the rear as shown in Figure 3-1, thus effecting forward inertial forces on the system. Test No. 5 data used as an example in this appendix is shown in Figure 3-2. Test No. 71 was a static longitudinal test and a typical test setup is shown in Figure 3-3. The data collected from this test are shown in Figure 3-4 in oscillogram form. The pertinent data anlyzed are shown in tabulated form in Table 3-I. Photographs of some of the types of damage or failures are shown in Figure 3-5 through 3-8.

The response curve as primarily defined is a plot of the response factor C versus the applied dynamic pulse duration t_n . To determine the longitudinal response factor for Seat A, Equation (1) from Page 2 of this report:

Effective Peak Inertia Force

effective weight x average input acceleration

or

$$C = \frac{g_e \times Wt}{W_t \times \bar{G}}$$

C =

was applied.

....

FIG. 3-2 TEST NO. 5 RECORDED DATA

FIG. 3-3 TYPICAL STATIC LONGITUDINAL TEST SETUP - SEAT A

P.G. P.-2 T.ES.P. NO. 5 RECORDED MEL

3-5

3

TABLE 3-I

SEAT A - LONGITUDINAL DYNAMIC AND STATIC TEST DATA

	ssts)			Relocated	edFig. 3-5							Test No. 3				coad Did Not Reach 9g Seat Belt Attachment Sigures 3-7 and 3-8
REMARKS	(Dynamic Tests)			Shear Load Sensors Relocated	Seat Pan Frame Failed. Fig.			Data System Failure				Same As Seat A-1.		(Static Test)		Ultimate Load Did Not Reach 9g (5283#). Seat Belt Attachment Failed. Figures 3-7 and 3-8
Effect Weight	1b	з	393 <u>3</u> 587	472 3	472 3	472 3	472 3	,	472 3	472 3	472 3	472 3				587
Peak Dummy. Accel.	ft/sec ² 32.2	00	2.84 2.46	7.36 3.10	11.93	5.99	6,38	•	9.03	10,39	12,43	13,39	Total Input Load	1b	Ъ	5166
sr+s _R	1b		788 673	2224 1229	3993	2220	2306	ı	3200	3702	4263	5000				3843
Right Horiz. Shear	1b	S _R	289 279	889 525	1507	902	951	i	1303	1451	1696	1928				1406
Left Horiz. Shear	1b	2 ^r	499 394	1335 704	2486	1318	1355	1	1897	2251	2567	3072				2437
R2+R5 and R3+R2	o c lb	RA	1411 1609	3662 3443	5684	3174	3197	1	4284	5053	5739	6500			100	7185
Left Right Left Right Mid Vert, Mid Vert, Aft Vert. Aft Vert. Reaction Reaction Reaction	1b	R ₆	420 630	1207 1158	1844	1128	1158	ı	1555	1751	1980	2172				2171
Left Aft Vert. Reaction	1b	R ₃	728 672	1954 1704	2721	1653	1657	1	2208	2648	3004	3360				3890
Right Mid Vert. Reaction	1b	R5	112 101	140 135	412	200	191	-	273	343	404	510				563
Left Mid Vert. Reaction	lb	R2	151 200	361 446	707	193	191		248	311	351	458				556
R1+R4	1b	RF	1200 1276			2427	2855	'	3661	4344	4825	5573				6900
Right Fwd. Vert. Reaction	1b	R4	538 448	1510 1258	5344 1	1058	1264		1628	1803	2152	2300				2500
Left Right Fwd. Vert. Fwd. Vert. Reaction	1b	R1	662 828	12	11,233 1	1369	1591		2033	2541	2673	3273				4360
Average Input Accel.	ft/Sec ² 32.2	10	1.63	3,37	5.34	3.04	3.02		4.03	4.68	5,85	6.08	Ríght Input Load	1b	FR	1712
Input Time Pulse			.238	.163	.150	.136	.137	'	.100	•098	.095	.095	Mid Input Load	1b	FM	1712
Test Seat Velocity Input No. No. Change Time Pulse	ft/Sec	ΔV	12.5	17.7	25.8	13.3	13.3	1	13.0	14.8	17.9	18.6	Left Input Load	1b	\mathbf{F}_{L}	1742
Seat No.			A-1	A-1	A-1	A- 2	A- 2	A- 2	A-2	A-2	A - 2	A- 2				A-5
Test No.			1	2	З	4	2	9	٢	~~~	6	10				71

Transducer did not return to zero; data
Trace went off the oscillograph paper.
Static weight determined from film.

FIG. 3-6 LEFT MIDBOTTOM SUPPORT - SEAT A-1 AFTER TEST NO. 3

FIG. 3-7 SEAT A-5 AFTER STATIC TEST NO. 71

The technique is illustrated in the following example:

The following values were taken from Table 3-I for Test No. 5.

 $W_t = 472 \text{ lbs.}, R_A = 3197 \text{ lbs.}, L = 24 \text{ inches}$

1 = 17 inches s = 8 inches

= 13.3 ft/sec and t_n = .37 sec for the sled

Solving for the effective peak inertia force, moments are taken about $\mathbf{R}_{\mathbf{F}}$

 $M_{RF} = (g_e \times W_t \times L) - (W_t \times s) - (R_A \times 1) = 0$

$$g_e = \frac{(W_t \times s) + (R_A \times 1)}{W_t \times L}$$

$$g_e = \frac{(472 \times 8) + (3197 \times 17)}{24 \times 472} = 5.12$$

To solve for the average input acceleration, \overline{G} , Equation (2) Page 6 of this report was applied.

$$\overline{G} = \frac{\Delta V}{g t_n}$$

= $\frac{13.3}{32.2 \times .137} = 3.02$

3-11

Thus the response factor, C, equals

$$C = \frac{W_t \times g_e}{W_t \times \bar{G}} = \frac{5.12}{3.02} = 1.69$$

This value is then plotted versus the input pulse duration, t_n , which in this case equals .137 sec.

To derive the longitudinal sensitivity curve for Seat A, Equation (1), Page 2 of this report, was rearranged to solve for average input acceleration expected

$$\overline{G} = \frac{g_e \times W_t}{C \times W_t} = \frac{g_e}{C}$$

when g_e or the effective peak inertia force, equals the present FAA static test load requirement of 9 g's. The response factor C, is then selected from the appropriate response curve for various values of t_n . For example, for a value of t_n equal to .100 sec, the value of C from the response curve, Figure 14 of the report, equals 1.70. Solving for \overline{G}

$$\bar{G} = \frac{9 g's}{1.70} = 5.3 g's$$

The corresponding velocity change

$$\Delta V = \bar{G} \times 32.2 \text{ ft/sec}^2 \times t_n \text{ sec}$$

or substituting the previously derived figures

$$\Delta V = 5.3 \times 32.2 \times .100 = 17.1 \text{ ft/sec}$$

This process is then repeated for various t_n 's until enough values of \overline{G} and ΔV are obtained to plot the sensitivity curve, Figure 21 of this report.

Tests Numbers 14 through 20 were conducted to collect the necessary data to establish the vertical response curve for Seat A. A typical test setup is shown in Figure 2-3 for a vertical dynamic test on the ACED Horizontal Linear Accelerator. A typical static test setup is shown in Figure 3-9. The tabulated data for Vertical Static Test No. 72 are shown in Table 3-II. Photographs of some of the test results are shown in Figures 29 and 30 of this report.

The technique used for deriving the vertical response and sensitivity curves is identical to that used to derive those for the longitudinal inertial forces except for the method of calculating

FIG. 3-9 TYPICAL STATIC VERTICAL TEST SETUP - SEAT A-6

R2+R5 Total and Reaction R3+R6 Load	1b 1b $\frac{ft/Sec^2}{32.2}$ 1b (Dynamic Tests)	RA RT 8 W	1174 2350 3.94 587 ¹	2624 5220 9.24 587 <u>1</u> Lower - Partial Data	Data System Failure	4006 7324 26.10 587 ± 2171 4166 8.04 587 ± Lower - Partial Data	4770 8955 34.05 $587 \frac{1}{2}$	5420 10,403 40.92 587 1	5258 10,982 44.04 Seat Severely Damaged. Fig. 20 2496 5,038 9.25 587 Lower - Partial Data	Total Input Load (Static Test)	£4	1771 2885 2812 587 Upper Figures - 5g Input Load 3521 5203 4775 Lower Figures - Final Load
Right Aft Vert. Reaction	1b	R6	354	606 494	1	1088 558	1624	1898	2030 821			760 1420
	0 1b	5 R3	5 470	5 1757 5 1684	•	3 2796 9 1398	7 3052	7 3503	5 3142 9 1535		a a constantina a constanti	2000
Right Mid Vert. on Reaction	1b	R5	95	76 76	2	38 29	57	47	95 29	<u></u>		00 12
R1+R4 Left Mid Vert. Reaction	1b	R2	255	185		84 186	37	- 28	- 9 111			- 100
	1b	RF	1176	2596 2411	'	3318 1995	4185	4983	5724 2542			1114 1682
Right Fwd.Vert. Reaction	1b	R4	413	1009 880	'	1276 663	1610	1837	2331 846	44 (M		407 632
Left Fwd.Vert. Reaction	1b	R1	763	1587 1531		2042 1332	2575	3146	3303 1696	14. A		707 1050
Average Input Accel.	ft/Sec ² 32.2	10	2.91	5.33 4.29	•	6.52 5.34	7.32	8.38	10.09 8.60	Right Input Load	1	952 1705
	Sec	tn	.112	.102	•	.090	.094	.095	.098 .026	Mid Input Load	da	978 1685
Test Seat Velocity Input No. No. Change Time Pulse	ft/Sec	ΔV	10.5	17.5 11.8		18.9 8.8	22.1	25.6	31.8 7.2	Left Input Load	4	882 1385
Seat No.			A-4	A-4	A-4	A=4	A-4	A-4	A-4			A-6
Test No.			14	15	16	17	18	19	20			72

SEAT A - VERTICAL DYNAMIC AND STATIC TEST DATA

3-14

TABLE 3-II

the vertical peak inertia force. Since in this case all forces act in the same direction, a summation of vertical forces will yield the inertia force. This also holds true for Seats B and C. See Table 3-II for Seat A vertical dynamic test data.

Seat B: Seat B was a three-place, tourist class, sheet metal and tubular-constructed seat (Figure 7 of report). Testing was conducted on six of the seats to collect the data required to determine the respective longitudinal and vertical response curves.

Tests numbered 21 through 40 were dynamic longitudinal tests. Tests numbered 82 and 83 were longitudinal static tests. The data values obtained from these tests are shown in tabular form in Tables 3-III and 3-IV. Photographs of some of the damage or failures are shown in Figures 3-10, 3-11, 3-12, 3-13, 3-14, 3-15, 3-16, and 3-17.

Vertical dynamic tests, numbered 65 through 70, were conducted to obtain the data necessary to establish the vertical response curve for Seat B. A typical test setup is shown in Figure 3-18 on the ACED 150-foot Vertical Drop Tower. For a tabular presentation of all of the vertical test data, see Table 3-V. Photographs of some of the damage and failures are shown in Figures 3-19, 3-20, 3-21, 3-22, and 3-23.

Seat C: Seat C was a three-place, tourist class, tubular-constructed, floor/sidewall-mounted seat (Figure 8 of the report).

Because of the seat's sidewall mounting, an energy absorption technique was designed into the inboard leg which would allow the forward leg to collapse at approximately 6 g's static load (Figure 3-24). Tests were conducted on seven of these seats to collect the necessary data to derive the respective longitudinal and vertical response curves.

Tests numbered 41 through 64 were dynamic longitudinal tests. A typical test setup for the floor/sidewall seat configuration is shown in Figure 11 of the report. Figure 3-25 shows a typical longitudinal test setup for Static Tests Numbers 84 and 85 conducted on Seat C. The tabulated data of both dynamic and static tests conducted are shown in Table 3-VI. Photographs of some of the damage and failures which occurred are shown in Figures 29 of the report, 3-26, 3-27, 3-28, 3-29, 3-31, 3-32, and 3-33.

Vertical dynamic tests, numbered 73 through 79, were conducted and the necessary data to establish the vertical response curve were obtained for Seat C. The vertical dynamic tests for Seat C were conducted on the ACED Vertical Drop Tower. The vertical static test was recorded as Test No. 85. Table 3-VII contains the data from the dynamic and static tests. Some of the seat damage and failures are shown in Figures 3-34, 3-35, 3-36, 3-37, and 3-38.

																								Courses	oeverat of pic 2-10		
DARK STAN	(Durania Taste)	Transfer y and the season					Data Suctor Dailing	nara oforem ratiate							Two Data Feaks Ubserved For	Several Keactions	Two Data Peaks Observed For	Several Reactions	Two Data Peaks Ubserved For	Several Keactions	Two Data reaks UDServed ror	Several Reactions	Two Data Peaks Observed For	Several Keactions	Two Data Yeaks Ubserved For Severa	Keactions - Seat buckle failed, FJS.	Fig. 3-11, Fig. 3-12.
Weight	÷	07	x	588	472	472	472		472	7/5	7/5	7/5	472	715	472		472		588		288		588		588		
Peak Dummy Accel.	ft/Sec ²	32.2	ы	5.01	13.54	15.70	18,21		15.28	17.34	0.48	10.64	10.34	12.15	11.98		12.01		12.21		12.79		12.33		15.46	13 13	
L + R	:	η,	n	2156	2526	2702	2946		2607	2696	1353	1935	2103	2093	2284	1335	2045	1375	2252	1480	2255	1935	2251	2491	3188	4091	
Kight Horiz. Shear	:	19	SR	693	933	978	1043		945	913	492	639	299	645	780	404	664	356	805	378	751	607	747	843	1201	963	
Left Horiz. Shear		Ib	2 ^r	1463	1593	1724	1903	•	1662	1783	861	1296	1 304	1448	1504	931	1381	1019	1447	1102	1504	1328	1504	1648	1987	3128	
		1b	RA	3855	4975	5027	5536	•	5242	5292	2749	4093	4051	4538	4384	4691	4282	4952	4520	5302	4655	5822	4591	6752	5648	7542	
Right Aft Vert. Reaction		1b	R3	737	895	852	958		959	915	501	774	758	774	703	561	720	624	739	518	687	706	697	977	787	854	
Left Aft Vert. Reaction		1b	R ₆	5.20	673	741	911	1	912	962	379	667	688	806	617	617	801	725	860	860	606	963	903	1131	816	1071	
R1+R4 Left Right Left Right Aft Vert, Aft Vert. Reaction Reaction Reaction Reaction	3454 (57)	1b	R2	1059	1404	1371	1433		1370	1385	800	1171	1201	1180	1280	1450	1170	1430	1252	1555	1263	1717	1212	1888	1727	2283	
lid Vert. Reaction		1b	R5	1499	2003	2063	2234	•	2001	20 29	1069	1481	1404	1778	1622	2063	1591	2173	1669	2369	1796	2436	1779	2756	2318	3334	
R1+R4 I		1b	$R_{\rm F}$	4071	8336	7982	9194	•	9329	9436	4636	6961	7634	8874	8064	7345	8904	7746	9682	9119	9600	9923	9590	9627	11606	11558	
Right Fwd.Vert. Reaction		1b	R1	1605	4573	3969	4526		4149	4301	1919	3752	3650	4511	3675	3593	4337	3923	4514	4305	4573	4861	3749	3255	48.30	5152	1
Vert. tion		1b	R_{4}	2466	3763	4013	4668		5180	5135	2720	3209	3894	2927	4389	3752	1567	38.73	5168	4814	5027	5062	5841	6372	6776	6406	
Input Average Time Input Pulse Accel.	N	32.2	ю	/, 88	7 0/2	R 07	8.80		8.35	8.43	4.54	6 50	6.53	TC T	7 50		7 00	1.07	5 22		5 46	2	5.18		714	LT . /	
Input Time Pulse		Sec .	t,	105	2001	.000	.063		270	550	125	1 23	118	1 25	CCT.	C+1*	155	CCT .	165	· TOT	177	111.	200	•	180	• 100	
Seat Velocity Input Average Left No. Change Time Input Reac		ft/Sec	D V	14 6		1	16.6		12 6	15.6	1 71	10 5	10.6	0.00	1 30	1*07	0 20	C*07	0 10	0*17	0 10	7*10	33 4	t***	715	d1.J	
Seat V No. C						-1				1-1					1-9	T=1		1-1	-	Į	-	1	-	1	-	-1-9	
Test No.				10	77		27			_	-	07	20	Т	11			55	10	54	10	5	36	00	5	3/	

SEAT B - LONGITUDINAL DYNAMIC TEST DATA

1

n - 4

TABLE 3-III

3-16

REMARKS	(Dvnamic Tests)					REMARKS	(Static Tests)		Seat Designed To Fail Progressively, Thus Two Sets of Figures. Seat Bell Attachment Failed at 92. See Figures 3-15, 3-16, 3-17.				
Effect Weight	1b	1	2	2 Leg Cross Channels Failed, Figures 3-13 and 3-14					Sea	Set Sea Fai Fig			
		+	1 472	9 472									
S _L +S _R Peak Dummy Accel.	32.2	+	20.87	27.59		Total	Input Load 1b	A	5348 6660	5259			
	10	s :	9797	5484				s	3744 4222	2849 3290			
Left Right Horiz, Horiz. Shear Shear	16	SR	1921	2461				SR	2480 2800	1940 2280			
Left Horiz. Shear	16	Is	2725	3023				SL	1264 1422	909			
R ₃ +R ₄ and R ₇ +R ₈	1b	KA	7840	8960				RA	6980 7615	6878 7409			
Aft.Vert. Reaction R - A	1b	R8	1348	1653				R ₈	1055 1300	1465 1872			
Aft.Vert. Reaction R - F	1b	R7	1903	2208				R7	1840 2375	1467 2050			
Aft.Vert. Reaction L - A	1b	R4	1782	2131				R4	1385 1365	1810 1412			
$ \begin{array}{c c} R_{1}^{+R_{2}} & \mbox{Aft.Vert. Aft.Vert. Aft.Vert. } & \mbox{Aft.Vert. } & \mbox{Aft.Vert. } & \mbox{R}_{3} & \mbox{R}_{4} & \mbox{R}_{4} & \mbox{R}_{5} & \mbo$	1b	R3	2807	2968				R ₃	2700 2575	2136 2075			
R1+R2 and R5+R6	16	RF	7224	8524				RF	6870 7280	6406 6575			
Forward Vert. Reaction R - A	1b	R6	2145	1144				R ₆	1895 2170	1714 2108			
C	1b	R5	1341	3000				R5	1070 1520	1040 1600			
Test Seat Velocity Input Average Forward Forward Forward Vert. No. No. Change Time Input Vert. Vert. Vert. Pulse Accel. Reaction Reaction Reaction Reaction	1b	R2	2127	2313				R2	2410 1675	2276 1491			
Forward Vert. Reaction L - F	1b	K1	44/	2067				R1	1495 1915	1376 1376			
Average Input Accel.	32.2	0	4.10	12,16		Right	Input Load 1b	FR	1831 2189	1744 2140			
Input A Time I Pulse A	<u> </u>	_	047	.088		Mid R	Input Input Load Load 1b 1b	FM	1755	1764 2025			
Velocity Change		D V	9.0 17.8	34.5	19. TEXN			FL	1762 2356	1751 1811			
No.			B-2 B-2	B-2		Test Seat Left	No.		B-5	B-6			
Test No.			39	017		Test	No.		82	833			

SEAT B - LONGITUDINAL DYNAMIC AND STATIC TEST DATA

TABLE 3-IV SELER DA

FIG. 3-12 REAR VIEW OF SEAT B-1 AFTER TEST NO. 37

FIG. 3-15 SEAT B-5 AFTER TEST NO. 82 SHOWING THAT SEAT BELT ATTACHMENT FAILED

FIG. 3-16 FRONT VIEW OF SEAT B-5 AFTER TEST NO. 82

FIG. 3-18 TYPICAL DYNAMIC VERTICAL TEST SETUP - SEAT B

TABLE 3-V

	and the second s		Pulse				Pulse		e - Aft Leg	/Buckled	SS					bes Bent
REMARKS		(Dynamic Tests)	Data For The Overall Time	Lower - Partial Data			Data For The Overall Time Pulse	Lower - Partial Data	Data For The Overall Pulse - Aft Leg	Lower - Partial Data	Left Leg Collapsed - Stress Tubes Bent				(Static Tests)	5g Load Ultimate Load - Stress Tubes Bent
Effect Weight	1b	wt	472		472	472	472		472		472					588
Peak E Dummy W Accel.	32.2	66	666	5.20	7.28	7.66	14.38	4.11	28.04	15.32	33.32	Total	Input	Load 1b	F	2882 6291
R ₂ +R ₄ R ₄ -R ₇ Peak and R ₇ +R ₈ Accel	1b	RT	2395	1898	2871	3392	6550	2777	10,907	9,343	11,963					2651 6510
g_{and}^{+R}	1b	\mathbb{R}_{A}	1094	734	1530	1412	3144	1438	5058	4680	5065					1100 2385
Right Aft Vert. Reaction Pos 2	1b	R3	•		1		1	•	•	1	1					269 248
$t_{\rm eff}^{\rm +R_2}$ Left Right Left Right Aft Vert, Aft Vert, Aft Vert, Aft Vert, Aft Vert, Aft Vert, $t_{\rm eff}$ Vert	1b	R7			•	1	•	•	-	•	1					176 390
Right Aft Vert. Reaction Pos 1	1b	R6	338	242	726	600	1424	706	2233	2048	3902					99 279
$ \begin{array}{c} \mathbb{R}_{1} + \mathbb{R}_{2} \\ \mathbb{a}_{nd} \\ \mathbb{A}_{ft \ Vert}, \\ \mathbb{R}_{3} + \mathbb{R}_{4} \\ \mathbb{R}_{esction} \\ \mathbb{Pos}_{\bullet} - 1 \end{array} $	1b	R5	756	492	804	812	1720	732	2825	2632	1163					556 1468
H2 H2	1b	RF	1301	1164	1341	1980	3406	1339	5849	4663	6898					1551 4125
Right Fwd.Vert. Reaction Pos 2	1b	R4	472	472	546	691	1214	613	2166	1768	3028					478 1191
Left Fwd.Vert. Reaction Pos 2	1b	R ₃	550	465	666	980	1702	561	2748	2291	2850					696 1672
Right Fwd.Vert. Reaction Pos 1	1b	R2	123	123	64	141	224	112	428	309	532					198 486
/ert. tion - 1	1b	R1	156	104	65	168	266	53	507	295	488					179 776
Average Input Accel.	11/Sec 32.2	ĸ	2.27	1.78	2.83	3.51	5.93	2.79	9.52	7.31	11.45	Sicht	Input	Load	FR	954
Input A Time I Pulse	Sec	t t	.127	.080	.179	. 248	.133	020	.085	045	.109	Mid	Input	Load Load	FM	978
Test Seat Velocity Input Average Left No. No. Change Time Input Fvd. Pulse Accel. React Pulse Accel. React	ft/Sec	∆ V	9.3		_	26.4			26.1		40.2			_	FT.	1
Seat No.			B-3		B-3	B= 3	R-3	2	R-3	2	B- 3					B-4
Test No.			65	>	99	67	89	2	69	6	70					80

SEAT B - VERTICAL DYNAMIC AND STATIC TEST DATA

3-27

FIG. 3-19 SEAT B-3 AFTER TEST NO. 69

FIG. 3-23 SEAT B-4 AFTER TEST NO. 80

FIG. 3-25 TYPICAL STATIC LONGITUDINAL TEST SETUP - SEAT

C

	(Dynamic Tests)		Seat Separated From Sled. Inb'd. Leg Failed First. Fig.3-26 and 3-27.		Forward Leg Buckled.Testing Continued.			Leg Failed Com- pletely. Figures 3-28, 29 and 30.		Forward Leg Buckles Testing Continued.	Seat Deformed; Testing Halted		(Static Tests)		Figs. 3-31,	
Effect Weight		Wt	458	458	573	573	458	458	573	573	573	Effect Weight	1b	Wt	573	573
Peak Dummy Accel.	60	80	14,16	4,30	5.71	5.32	4,12	7.54	5.77	7.68	8,48	Total Input Load	1b	ß4	2528	2273
S _L +S _R Peak Dumm Acce	lb	s	5629	1771	2873	2461	2008	3484	3040	3357	3514	$v_{\rm L}^{+V_{\rm R}}$		Ν	2173	3000
Left Right Horiz. Horiz. Shear Shear Reaction Reaction	1b	S _R	3542	1272	2019	1475	1109	1825	2262	2398	2223		keaction 1b	VR	1313	1125
Left Horiz. Shear Reaction	1b	sL	2087	505	854	986	899	1659	778	959	1291	Left Horiz. Shear	Keaction	٨L	860	720
Input Avg. Time Input Pulse Accel.	60	i0	6.47	3.27	2,93	2.63	5.10	3.84	2,50	3.71	3.01	Right Input Load	1b	FR	734	069
Input Time Pulse	ur L	Ľ	.183	•058	.110	.145	•043	•098	. 308	.110	.172	Mid Input Load	1b	ΡM	782	727
Test Seat Velocity Input Avg. No. No. Change Time Inpu Pulse Acce	ft/Sec	Λ	38.10	5.7	10.4	12.3	7.1	11.8	24.4	13,1	16.5	Left Input Load	1b	FL	1012	856
Seat No.			C-1	C-2	C=2	C-2	C-2	C= 2	с-3	5	С- 3	Seat No.			C-5	6-7
Test No.			56	57	58	59	60	61	62	63	64	Test No.			84	86
REMARKS	(Dynamic Tests)		Wall Attachment Torqued. Lateral Load Link Failed.	Leg Collapsed & Foot Freed From Track - Lost Data	Leg Replaced							Leg Collapsed Testing Continued				
Effect Weight	1b	Wt	573	573	573	573	573	458	458	458	458	458 458	573	573	458	458
Peak Dummy Accel.	60	60	5.49	7.39	4.28	4.16	3.97	3•39	5.95	3.33	4 . 26	6.39 8.05	4.34	7.42	6.36	8.50
s _L +s _R	1b	s	2490		1670	1695	1456	1064	1912	1356	1696	2546 3197	1602	2848	2739	3094
Left Right Horiz, Horiz, Shear Shear Reaction	lb	S _R	1651		1185	1240	1107	819	1461	1019	1285	1927 2302	983	1836	1562	1840
Left Horiz, Shear Reaction	1b	1s	839		485	455	349	245	451	837	411	619 895	619	1012	1177	1254
Input Average Time Input Pulse Accel.	60	ß	2.68		2.06	2.11	1.82	1.72	3.10	2.77	3,52	5.22	1		3.87	8.37
Input / Time : Pulse /	Sec	t L	.145	.148	.172	.150	.130	060*	.070	.056	.052	.044	237	144	.105	•052
Test Seat Velocity Input Average Left No. No. Change Time Input Hori Pulse Accel. Shear	ft/Sec	N	12.5	12.4	11.4	10.2	7.6	5.0	7.0	5.2	5.9	7.4	11.3	12.5	13.1	12.1
Seat No.			C- 1	C=1	C-1	3	5 5	5-1-5	5	C-1	C-1	5 5	5	5	5	5
Test No.			41	42	43	44	45	46	47	48	49	50	5.5	53	54	55

SEAT C - LONGITUDINAL DYNAMIC AND STATIC TEST DATA

TABLE 3-VI

FIG. 3-26 SEAT C-1A AFTER TEST NO. 56 - LEG FAILED FIRST

4

FIG. 3-27 SEAT C-1A AFTER TEST NO. 56

FIG. 3-28 SEAT C-2 AFTER TEST NO. 61 - LEG FAILED

FIG. 3-29 UNDERSIDE VIEW OF SEAT C-2 AFTER TEST NO. 61

FIG. 3-33 LEG FRAME OF SEAT C-5 AFTER TEST NO. 84

REMARKS	(Dynamic Tests)		Lower - Partial Data		Lower - Partial Data	No Data - Instrumentation Breakdown			Inboard Legs Failed, Figures 3-34 and 3-35	(Static Tests)		See Figures 3-36, 3-37 and 3-38. Weight Was Electronically Zeroed (6g = 5g + Wt)
Effect Weight	1b	Wt	458 458	458	458	458	458	458	458			
	60	60	6.32 3.11	11.38	11.70 2.25		8.58	6.48	9.88			
R4+R5 RA+RF Peak +R6 Accel		RT	2634 1673	3307 1	3424 1		2700	2995	5365			1
R4+R5 +R6		RA	1973 1154	2027	2169 1326		1712	2104	3204	Sec. 1		
	1b	Ř6	831 332	352	511 142		238	534	972	Effect Weight 1b	Wt	573
Left Right Right Aft Aft Aft Vertical Vertical Vertical Reaction Reaction Reaction Reaction Pos 2	1b	RS	624 580	847	1058 937		790	1010	1182	RA+RF	RT	2864 5056
Left Aft Vertical Reaction	1b	R4	518 242	828	600 247		684	560	1050		RA	1772 3409
R1 ^{+R2} +R3		RF	661 519	1280	1255 616		988	891	2161	Right R4 ^{+R5} Aft ^{4-R5} I Vert. I Vert. I tion Pos.2 1b	R6	577 1110
Right Forward Vertical Reaction Pos 2	1b	k3	307 138	459	450 348		372	340	649	Left Fight Right Aft Aft Aft Vertical Vertical Vert. Reaction Resction Resc- Pos 1 tion 1b 1b 1b 1b	RS	700 1339
Left Right Right Forward Forward Vertical Vertica Reaction Reaction Reaction Reaction	1b	R2	52 139	236	261 87		226	160	832	Left Aft Vertical Reaction 1b	R4	495 960
Left Right Right Forward Forward Porward Vertical Vertical Vertical Reaction Reaction Pos 1 Pos 2	1b	Rl	302 242	585	544 181		390	391	680	^R 1+2 +R3	RF	1092 1647
Input Average Time Input Pulse Accel.	60	⁰	2.54 1.41	2.83	4.08 1.61		2.03	3.18	6.02		R3	302 520
Input // Time Pulse //	Sec	tn	.127	.176	.182 .022		.120	.252	.123	Right Right Fwd. Fwd. Vert. Vert. Reac- Reac- tion tion Pos.1 Pos.2	R2	300 362
Test Seat Velocity Input Average Left No. No. Change Time Input Porwark Pulse Accel. Verti Reac	ft/Sec	V	10.40 2.49	16.04	18.12 1.14		7.85	25.72	23.85	d al on	Rl	490 765
Seat No.			C-4	C-4	C-4	C-4	C-4	C-4	C-4	Test Seat Left No. No. Vertic Reacti		C-6
Test No.			73	74	75	76	77	78	79	Test No.		85

DATA
TEST
STATIC
AND
DYNAMIC
VERTICAL
1
υ
SEAT

TABLE 3-VII

3-44

FIG. 3-34 REAR VIEW OF SEAT C-4 AFTER TEST NO. 79

FIG. 3-36 SEAT C-6 AFTER STATIC TEST NO. 85

FIG. 3-37

,

FIG. 3-38 LEG FRAME OF SEAT C-6 AFTER STATIC TEST NO. 85