Mr. Surg 155 031

F55000242R

14) Malener

Report No. NA-68-36

(DS-68-16)

FINAL REPORT

Contract No. FA66NF-AP-7

Project No. 510-001-11X

SMOKE AND GASES PRODUCED BY BURNING AIRCRAFT INTERIOR MATERIALS

JUNE 1968

Prepared for

DEPARTMENT OF TRANSPORTATION FEDERAL AVIATION ADMINISTRATION NATIONAL AVIATION FACILITIES EXPERIMENTAL CENTER Atlantic City, New Jersey 08405

by

Fire Research Section National Bureau of Standards U. S. Department of Commerce Washington, D. C. 20234

FINAL REPORT

Contract No. FA66NF-AP-7 Project No. 510-001-11X Report No. NA-68-36 (DA-68-16)

SMOKE AND GASES PRODUCED BY BURNING AIRCRAFT INTERIOR MATERIALS

June 1968

Prepared by D. Gross J. J. Loftus T. G. Lee V. E. Gray

Distribution of this document is unlimited. This report has been prepared by the National Bureau of Standards for the Department of Transportation, Federal Aviation Administration, National Aviation Facilities Experimental Center, Atlantic City, New Jersey, under Contract No. FA66NF-AP-7. The contents of this report reflect the views of the contractor, who is responsible for the facts and the accuracy of the data presented herein, and do not necessarily reflect the official views or policy of the FAA. This report does not constitute a standard, specification or regulation.

> Fire Research Section National Bureau of Standards Washington, D. C. 20234

FOREWORD

This report was prepared by the Fire Research Section, National Bureau of Standards for the Federal Aviation Administration. The work effort was part of a program of the Engineering and Safety Division, Aircraft Development Service, Washington, D. C. Engineering liaison and technical review for this project were furnished by the Propulsion Section, Aircraft Branch, Test and Evaluation Division, National Aviation Facilities Experimental Center, Atlantic City, New Jersey.

Certain commercial materials and equipment are identified in this paper in order to adequately specify the experimental procedure. In no case does such identification imply recommendation or endorsement by the Federal Aviation Administration or the National Bureau of Standards, nor does it imply that the material or equipment identified is necessarily the best available for the purpose.

ABSTRACT

Measurements are reported of the smoke produced during both flaming and smoldering exposures on 141 aircraft interior materials. Smoke is reported in terms of specific optical density, a dimensionless attenuation coefficient which defines the photometric obscuration produced by a quantity of smoke accumulated from a specimen of given thickness and unit surface area within a chamber of unit volume. A very wide range in the maximum specific optical density was observed. For the majority of materials, more smoke was produced during the flaming exposure test. However, certain materials produced significantly more smoke in the absence of open flaming.

During the smoke chamber tests, indications of the maximum concentrations of CO, HCL, HCN and other selected potentially toxic combustion products were obtained using commercial colorimetric detector tubes. A study was made of the operation, accuracy and limitations of the detector tubes used. Measurements of the concentrations of HCL were also made using specific ion electrode techniques.

The elevated temperature thermal degradation of selected materials was studied in a number of ways including thermogravimetry and differential scanning calorimetry.

Qualifative identification of the major components of the original test materials was accomplished primarily by infrared absorption spectro-photometry.

Of the materials tested, a number were found to possess good heat stability properties, and did not generate large quantities of smoke or high concentrations of the combustion products selected for analysis.

TABLE OF CONTENTS

		Page
FOREWORD		iii
ABSTRACT		v
INTRODUCTION		1
Purpose Backgroun	d	1 1
DISCUSSION		1
Smoke Mea Gas Meas u	vimetry and Differential Calorimetry	1 2 5 6 8
TEST RESULTS A	ND ANALYSIS	8
Smoke Mea Gas Measu	rement wimetry and Calorimetry case	8 9 15 19 19 25
CONCLUSIONS		31
RECOMMENDATION	IS	32
REFERENCES		33
APPENDIX 1	Gas Analysis (9 pages)	1-1
APPENDIX 2	Typical Smoke Accumulation Curves for Selected Materials (6 pages)	2-1
APPENDIX 3	Materials Description (17 pages)	3 - 1
APPENDIX 4	Summary of Test Results; Smoke and Gas Concentration (17 pages)	4-1

LIST OF ILLUSTRATIONS

Figure		Page
1	Smoke Test Chamber	3
2	Smoke Chamber Assembly	4
3	Schematic of Thermogravimetric Analysis Apparatus	7
4	Frequency Distribution of Maximum Smoke Values	10
5	Frequency Distribution of Maximum Smoke Values by Groups	11
6A,B,C	Smoke and Gas Concentrations for Individual Materials (3 pages)	12
7	Reproducibility of Smoke and Gas Concentration Indications	16
8	Comparative Decay in HCl and CO Concentrations for Several Smoke Density Levels	18
9	Thermal Decomposition of Sample No. 10	20
10	Thermal Decomposition of Sample No. 36	21
11	Thermal Decomposition of Sample No. 26	22
12	Specific Optical Density vs. Geometrical Factor for Five Selected Light Transmission Values	26
13	Gas Concentration in 10,000 ft ³ Cabin Based on Indicated Concentration in Smoke Test Chamber	29
1.1	Flow Dilution and Calibration Arrangement	1-4
1.2	Measured Emf vs. HC ℓ Concentration in Gas Phase	1-6
2.1	Typical Smoke Curves - Fabrics	2-2
2.2	Typical Smoke Curves - Rugs	2-3
2.3	Typical Smoke Curves - Sheets	2-4
2.4	Typical Smoke Curves - Sheets, Laminates	2-5
2.5	Typical Smoke Curves - Pads, Insulation, Assemblies	2-6

LIST OF TABLES

Table		Page
I	Materials Description (17 pages)	3-1
II	Summary of Test Results; Smoke and Gas Concentration (17 pages)	4-1
III	Total Heat Release and Maximum Heat Release Rate - FAA Radiant Panel Data (2 pages)	23
IV	Critical (Projected) Surface Area of Material Burned in 10,000 ft ³ Volume	28
I-1	Measuring Range of Colorimetric Indicator Tubes and Toxicological Data for Selected Gases	1-2
I-2	Interfering Components on Colorimetric Tubes	1-7
I-3	Colorimetric Indicator Tubes	1-9

INTRODUCTION

Purpose

This series of laboratory studies was undertaken to measure certain combustible characteristics of cabin interior materials used in aircraft. The scope of this work includes (a) measurement of the smoke and concentrations of certain potentially toxic gases produced by cabin furnishing materials under fire conditions, and (b) characterization of the thermal degradation of these materials at elevated temperatures. These studies are designed to help in understanding the incidence and propagation of fire and smoke in air transports, and to assist in providing a technical basis for defining criteria for fire safety standards.

Background

Regulatory safeguards for limiting the fire hazard of transport aircraft interior materials are contained in the Federal Aviation Regulations (FAR-Part 25, amended October 24, 1967) of the Federal Aviation Administration (FAA), which specify the use of flame-resistant materials. However, no requirements exist relating to the production of smoke and potentially toxic products.

Recent accidents involving fire, and the development of new materials and test methods, suggested that additional technical information should be assembled. Accordingly, the FAA obtained information based on laboratory tests of the flammability and smoke characteristics of over 100 representative interior materials [1], as well as by means of full-scale fire tests within an airplane fuselage with complete cabin furnishings and interior decor under conditions simulating normal operation [2]. The present laboratory studies are a part of FAA Project No. 510-001-11X, "Hazardous Combustible Characteristics of Cabin Materials," and were undertaken with the objectives of (1) providing measurements on the generation of smoke and decomposition products using a recently developed smoke test chamber [3], and (2) providing basic information on the thermal degradation and heat release properties of selected aircraft interior materials at elevated temperatures.

DISCUSSION

Material Identification

Qualitative identification of the major components of the materials prior to test was accomplished primarily by infrared absorption techniques using a Beckman Model IR-8 Infrared Spectrophotometer. This involved preparing a specimen in either film or solid pellet form, with or without potassium bromide, suitable for obtaining an infrared absorption spectrum. In some cases, solvent extraction and separation were necessary in order to obtain a suitable film. Except for wools, which

1

were identified by nitration tests, and other spot tests which were employed for cellulosic materials, most materials were identified by comparison of their infrared absorption spectra with reference spectra of known compositions. When some estimate of the percentage composition of blends or mixtures was possible, this was included and listed in order of major to minor components. For fabric blends, valid quantitative estimates are usually very difficult to make. Poly (vinyl chloride) and poly (vinylidene chloride) polymers are difficult to detect specifically by infrared techniques because they have weak absorption bands and because pigments, fillers and polymer components with which they are mixed generally have overlapping spectral bands. As much as 20 to 40 percent of PVC or poly (vinylidene chloride) could go undetected.

Generic names are given in all cases, even though the spectra for some materials were so similar to reference spectra identified by trade name from the literature that very little doubt existed as to source.

Smoke Measurements

The smoke level was determined by measuring the progressive attenuation of a light beam passed through the smoke aerosol within an enclosed smoke chamber (see Figs. 1 and 2). Smoke is reported in terms of specific optical density, a dimensionless attenuation coefficient which defines the quantity of smoke accumulated from a specimen of unit surface area in terms of its photometric obscuration over unit path length within a chamber of unit volume. For the typical application in which the material is to be used as an interior finish (e.g. on walls, ceilings, floors), the fire-exposed surface area of the specimen governs its smokeproduction behavior. Specimen thickness (unit weight) correspond to the materials as supplied and used. The basis and limitation of the method were described in detail in a recent paper [3], which also discussed the general relationship between the measured specific optical density and the level of smoke through which a light (or lighted exit sign) may be seen.

The tests involved a thermal irradiation exposure of 2.5 watts per square centimeter $(2.2 \text{ Btu/ft}^2 \cdot \text{s})*$ normal to the exterior surface of a 3 x 3 inch specimen and were performed under both flaming and nonflaming (smoldering) exposure. To induce open flaming in the former case, a small pilot (0.35 SCFH natural gas diffusion flame in a 1/16 inch i.d. tube) was applied at the base of the specimen. These conditions were selected to provide a wide range of smoke levels for different types of materials. The size of the specimen and the volume of the chamber were such that complete oxidation of practically all materials could occur without appreciable decrease in oxygen content. Materials were furnished by the sponsor and were tested using a typical section in the thickness supplied.

* 1 British thermal unit (Btu) = 1055 watt-second (W·s)

Fig. 1 Smoke Test Chamber

FIG. 2 - SMOKE CHAMBER ASSEMBLY

A-Chamber B-Exhaust blower C-Photometer light source D-Blowout panel E-Hinged door with window F-Air pressure gage G-Gas flowmeter H-Blower and damper lever I-Photometer

J-Pilot burner lever K-Service openings L-Support frame M-Temperature controller N-Main power switch O-Internal light switch P-Autotransformers Q-Gas, air shut-off valves R-Electric ignitor switch S-Gas, air control valves T-Gas sampling port

- 4 -

Optical density, defined as $D = \log \frac{100}{T}$ (where T = percent light transmission), is the single most characteristic measure of the obscuring quality of a smoke. Specific optical density, D, is a property of a specimen of given thickness, and represents the optical density measured over unit path length (L), within a chamber of unit volume (V), produced from a specimen of unit surface area (A). Thus, $D_s = D \frac{V}{AL} = \frac{V}{AL} \log \frac{100}{T}$.

For the test chamber, $V = 18 \text{ ft}^3$, $A = 0.0456 \text{ ft}^2$, and L = 3 ft. Ideally, the change in D with time during the smoke accumulation process will depend only upon the thickness of the specimen, its chemical and physical properties, and the exposure conditions. The results are reported in terms of (a) maximum (total) smoke accumulation, D , (b) maximum rate of smoke accumulation (over a 2-minute period), R^m, and (c) the time period, t_c, to reach a "critical" specific optical density of 16, under the test conditions.

However, there are definite limitations to the use of specific optical density for extrapolation and comparison with other box volumes, specimen areas and photometric systems, and for extension to human visibility. The degree to which such extensions are valid depend upon a number of major assumptions: the smoke generated is uniformly distributed and is independent of the amount of excess air available and of any specimen edge effects; coagulation and deposition of smoke is similar regardless of the specimen size, or the size and shape of the chamber; for any given smoke the optical density is linearly related to concentration; and human and photometric vision through light-scattering smoke aerosols, expressed in terms of optical density, are similar.

Gas Measurement

Indications of the concentrations of gaseous products were obtained by drawing a sample of the gas mixture in the smoke test chamber through commercial colorimetric gas detector tubes and reporting results on the basis of the manufacturers calibrations for the selected gases [4]. Where $\mathrm{HC}\ell$ was one of the products, in many cases the gas was also absorbed in water and analyzed by a chloride ion electrode. Essentially, a colorimetric tube is a small-bore glass tube containing a chemical packing which changes color when exposed to a specific component of a gas mixture, and the length of color stain is related to the concentration of that component for a given quantity and rate of flow of gas. Layers of precleaning granules and a plug to absorb interfering gases and to control the sample flow rate are generally provided. Sampling was done several times during each smoke test using a small syringe or bellows pump designed to aspirate a measured volume of gas each stroke. The gas detector tube was inserted into the smoke chamber from the top, and was situated 3 inches below the top surface of the chamber (approximately 25 inches above the level of the specimen). In some instances an attempt was made to extend the range of these indicators by drawing less

than the recommended gas volume through them and reporting results on the basis of individual laboratory calibrations, as reported in a later section. More detailed discussion of product gas analysis by colorime-tric detector tubes and by specific ion electrode are presented in Appendix 1.

Indicator tubes were used to search for CO, HCN, HC ℓ , HF, SO₂, NO+NO₂, NH₃, C ℓ_2 and COC ℓ_2 , since these gases have generally been considered toxicologically hazardous compared with other possible components. However, these are not necessarily the only potentially toxic components released. No attempts were made to measure high concentrations of CO₂ or low concentrations of O₂, or to consider the type, size or concentration of smoke particles in toxicological terms. Information on the measuring range limits for the tubes used, and references to the toxic hazard limits of these gases are discussed in Appendix 1. For all materials which produced high concentrations of HC ℓ (greater than 500 ppm), a specific ion electrode was also used to provide a more accurate indication.

Thermogravimetry and Differential Calorimetry

Two complementary methods were explored for characterizing the elevated temperature thermal decomposition of materials: thermogravimetry, in which a specimen is continuously weighed as it is heated, and differential calorimetry, in which the magnitudes of exothermic and endothermic processes are measured as a function of increasing temperature. In this report reference is made to thermogravimetric analysis (designated TGA), differential thermogravimetric analysis (DTGA) and differential scanning calorimetry (DSC).

To measure weight loss as a function of temperature, an aluminum pan containing the specimen was suspended within an electrically-heated furnace by means of a wire attached to a sensitive weight transducer. See Fig. 3. The heating rate of the furnace was controlled at about 10 °C/min (18 °F/min) to provide sufficient time for the reactions on a 1-inch square specimen to be stabilized. The transducer, Statham Type UC 2 with Type UL 5 microscale accessory, had weight ranges of 3, 6, and 15 g and was accurate to within ±0.15 percent of full scale. It was mounted within an air-purged enclosure to protect it from the heat and gaseous decomposition products. Thermocouples, of No. 24 gage (0.020 inch) chromelalumel wires, were placed immediately below the specimen pan to provide temperature measurement and control without affecting the weight determination. In addition to a record of weight as a function of time (and temperature), a simple differentiation circuit [5] was used to obtain a simultaneous continuous record of the derivative of the weighttime record.

- 7 -

Calorimetric measurements were made on selected materials using a Perkin-Elmer Model DSC-1B Differential Scanning Calorimeter. A record of the exothermic and endothermic reactions occurring during physical or chemical changes in inert (N_2) atmospheres up to 500 °C (932 °F) were obtained at selected heating rates on samples weighing up to 20 mg.

Heat Release

As requested by the sponsor, a measure of the total heat release during flaming combustion of these materials was derived from the stack temperature rise data during radiant panel flammability tests [6] performed by FAA. This data was assembled to explore possible relationships between the total heat released in the radiant panel test and the growth of fires in cabins containing such materials. The radiant panel method involves the determination of the temperature rise within a stack placed over a 6 x 18 inch test specimenwhich is subjected to a 15-minute surface flammability test exposure, as compared to a completely noncombustible asbestos-cement specimen. In the standard flammability test, only the peak temperature rise is used in calculating a flame spread index. In this instance, the total area under the stack temperature versus time curve was also measured and was taken to be representative of the total heat release during flaming combustion.

TEST RESULTS AND ANALYSIS

Material Identification

Table I (Appendix 3) is a list of materials, showing numerical designation, thickness, unit weight, type, use and approximate chemical composition of the major components. Of the 141 materials studied, these may be divided into the following groups:

Sheet materials	46
Laminates	21
Fabrics	38
Rugs	10
Pads, Insulation and Assemblies	24
Films	2

Identification of the materials was based almost entirely upon infrared absorption spectrophotometry with the following results:

Of the 38 fabrics composed of woven fibers, only a few were essentially natural fibers (cotton and wool), a few were composed of a mixture of natural and artificial fibers, but the bulk of the fabrics were made from 100% artificial fibers, including acrylics, modacrylics, polyesters, polyamides (nylon-type), vinyl and glass. Of the sheet and laminate materials, approximately one-half were composed entirely or predominantly of poly vinyl chloride (PVC), and the remaining sheet and laminate materials were composed of acrylonitrilebutadiene-styrene (ABS), methyl methacrylate, and other copolymers, blends and varieties of polymers. The tested rugs included wool, modacrylics, polyamide (nylon and aromatic types) and polypropylene. Of the pads used for seats, there were several urethane foam materials and one rubber (chloroprene). The materials used as ceiling or bulkhead insulation included mainly glass fiber materials or a paper honeycomb sandwich.

Smoke Measurements

Smoke measurements are summarized in Table II (Appendix 4) in terms of the maximum smoke accumulation (D_m) , the maximum rate of smoke accumulation (R_m) and the time (t_c) to reach a specific optical density of 16 for both flaming and smoldering exposure. These results represent averages of duplicate tests (with few exceptions) and were fairly reproducible. Smoke buildup curves for typical flaming and smoldering tests on selected types of materials are shown in Appendix 2.

A very wide range of D values was measured. Slightly more than 15 percent of the materials produced smoke corresponding to a D = 16 or less, for both flaming and smoldering exposures. These included materials composed of glass, asbestos, aromatic polyamide, polyimide plus others, but many of these materials were very thin (lightweight). D values in excess of 200 were recorded for flaming and smoldering exposures on approximately 20 percent of the materials.

For flaming exposure of 140 materials, frequency distribution histograms of the maximum smoke values are shown in Fig. 4 for all materials, and in Fig. 5 within the classification groups: (a) fabrics, (b) rugs, (c) sheets, films and laminates, and (d) pads, insulations and assemblies. Of the materials in the $D \leq 16$ category, 16 were fabrics, 6 were sheets or films and 4 were glass or asbestos fiber insulations. However, of

the 22 fabrics, sheets and films, only 3 weighed more than 20 oz/yd^e (0.068 g/cm²). With one exception, all materials in the $D_m^{<}$ 16 category under flaming conditions were also $D_m^{<}$ 16 under nonflaming conditions.

Figures 6A, 6B and 6C comprise a complete histogram showing smoke and toxic gas concentrations for flaming and nonflaming exposures on each material based on the data in Table II (Appendix 4). Materials have been arranged according to classification by groups, by composition, and by generally increasing weight within each subgroup.

- 10 -

- 11 -

- 12 -

.

- 13 -

- 14 -

It should be noted that only the "front" side of a material was exposed, and that specimens exhibited a very wide range in their physical and thermal behavior during flaming and nonflaming exposure. Materials which melted at fairly low temperatures, including nylon, polysulfone and polyethylene, flowed to the bottom or dripped off the sample holder in varying degrees, resulting in less smoke. Some materials evaporated fairly rapidly before extensive decomposition or combustion took place. All urethane foam materials produced more smoke under smoldering exposure than with flaming exposure, except in one instance where the material was noted to shrink into a corner of the holder and was, therefore, subjected to less radiation. Rubber (chloroprene), ABS, methacrylate and PVC meterials nearly always produced more smoke under flaming exposure. Under thermal radiation exposure alone, elastomers generally formed a bell-shaped protrusion at their center through which gaseous products streamed out rapidly. The maximum smoke level naturally depends upon the thickness (and density) of the specimen, and for some materials D_{m} may be expected to increase with thickness but not always in direct proportion [3].

Gas Measurements

"Maximum" indicated concentrations of gases are listed in Table II (Appendix 4) along with the smoke data. These values are based on the average of two separate determinations, except that additional tests were made where large discrepancies (greated than a factor of 2) between duplicate values were obtained. Unlike the measurement of optical density of smoke, which is recorded continuously to obtain a maximum, gas concentration was measured periodically. Particularly for components which change rapidly, therefore, the indicated gas concentration values may not necessarily be the true maximum values. For the materials tested, the highest indicated concentrations were 2200 ppm CO, 2500 ppm HCL, and 90 ppm HCN. These concentrations refer to the same exposed area of specimen and chamber volume used, but to a wide range of specimen weights.

Since the primary objective of this study was to ascertain order of magnitude values, no extensive efforts were made to improve reproducibility. As a test of reproducibility for a PVC material (specimen No. 44), 5 separate smoldering exposure tests were conducted with the results shown in Fig. 7. This figure shows the 5 replicate smoke curves and a tabulation of indicated gas concentrations at specific times during each test. The measurement ranges were on the order of $\pm 20\%$ for CO and HCN and $\pm 30\%$ for HC&, and such variations may be considered typical of the maximum indicated concentration values under the test conditions.

Fig. 7 Reproducibility of Smoke and Gas Concentration Indications Sample No. 44 (PVC/PVA/ABS) Nonflaming Exposure

- 16 -

Because the plastic materials studied were from many manufacturers and generally contained plasticizers, fillers and other additives, it is difficult to relate quantitatively gaseous product concentrations with polymer composition. In general, $HC\ell$ was produced by polyvinyl chloride and modacrylic materials, HF from polyvinyl fluoride, HCN from wool, urethane, ABS, and modacrylics, and SO₂ from polysulfone and rubber materials. CO was produced by almost² all the samples in varying amounts depending on the type of material.

It has been shown[7] that the amount of a given gas produced during pyrolysis and its rate of generation are strongly temperature dependent. Thus, any materials or processes which affect the temperature profile across the specimen (e.g. fillers and plasticizers which produce surface crusting, intumescence, etc.), could readily influence the concentration of gaseous products. For certain materials, higher concentrations of some gases may be produced under conditions of insufficient air, e.g. 10 percent oxygen [8].

Sampling was performed sequentially, proceeding generally from HCl and HF to HCN to CO, and was initiated when optical density of the smoke approached its peak. This procedure was followed because of the fairly rapid decay in halogen acid concentration resulting from adsorption on (and reaction with) moisture, smoke particles and chamber surfaces. To facilitate subsequent data comparison, sampling for HCl and HF was generally initiated at the beginning of the minute close to the maximum smoke level, and at two-minute intervals thereafter for other gases.

Gas temperature at the sampling tube inlet generally ranged from 46 to 52 °C (115 to 126 °F), the higher temperatures occurring during flaming tests on heavier materials. Due to the cooling effect of the precleaning layers of the indicator tubes, the temperature of the gases passing the indicating layers were within the prescribed maximum temperature limits. The sampling rate was generally unaffected by either the elevated temperature of gases or by heavy smoke particle concentrations.

Hydrogen chloride is generally released rapidly during combustion or pyrolysis of polyvinyl chloride, modified acrylics and other retardant-treated materials [9, 10]. Maximum levels were generally higher under flaming compared to smoldering exposure conditions presumably due to the higher temperature involved and the resultant greater rate of release. The HC ℓ concentration changed rapidly as a result of its high reactivity, solubility in water, and adsorption on smoke particles and wall surfaces. The type of surface as well as the total area of the interior walls have a pronounced influence on the adsorption and settling (or decay) rate of HC ℓ and smoke. To illustrate the decay of both HC ℓ and CO, a suitable concentration of the pure component was metered into the bottom of the chamber under both smokefree and smoke-filled conditions. Figure $\hat{8}$ shows the indicated

Top: Smoke, nonflaming exposure, 2 selected PVC/PVA materials Center: HCl Concentration. Prior to taking readings, 220 cm³/min of HCl was introduced in chamber over 3-min period Bottom: CO Concentration. Prior to taking readings, 190 cm³/min of CO was introduced in chamber over 3-min period

- 18 -

concentrations of HC^{ℓ} and CO. In the tests involving smoldering specimens, the gas concentration levels are higher because a portion of the gas is introduced by combustion. The decay rates are also higher. A similar decay would be expected to exist following the generation of HC^{ℓ} at this level of concentration from a specimen during test exposure.

The effect of a pilot flame on the buildup of CO in flaming exposure tests is shown in the lower figure.

Thermogravimetry and Calorimetry

The thermal decomposition of three selected materials at elevated temperatures is shown in Figs. 9, 10, 11 in terms of weight vs. temperature (TGA), rate of weight loss vs. temperature (DTGA) and the exothermic and endothermic reactions vs. temperature (DSC). Although the DSC is intended for quantitative calorimetry, the calculations were not made for the few selected materials of this preliminary study.

For an acrylonitrile-butadiene-styrene (ABS) copolymer, Specimen No. 10, shown in Fig. 9, the rate of weight loss increased steadily reaching a peak at approximately 350-370 °C (662 to 698 °F) and then decreased gradually up to 500 °C (932 °F). The DSC scan showed a very substantial exotherm extending over a wide temperature range (170 to 440 °C (338 to 824 °F) with a peak at approximately 380-390 °C (717 to 734 °F).

For a plasticized poly (vinyl chloride) sheet, Specimen No. 36, shown in Fig. 10, there was a peak rate of weight loss at about 320 °C (608 °F) followed by additional, but less pronounced weight losses at about 400 °C (752 °F) and 500 °C (937 °F). The DSC scan showed a strong endotherm in the temperature range 265 to 320 °C (509 to 608 °F) followed by a strong exotherm to 335 °C (635 °F).

For a melamine and urea formaldehyde laminate, Specimen No. 26, shown in Fig. 11, there were two significant weight loss ranges at average temperatures of about 320 °C (608 °F) and 500 °C (932 °F). The DSC scan showed an endotherm in the temperature range 40-160 °C (104-320 °F) and an exotherm in the temperature range 160 to 420 °C (320 - 799 °F) with a maximum near 330 °C (626 °F).

Heat Release

As a measure of the total heat released during the radiant panel flame spread test (conducted by FAA), the area under the curve of stack thermocouple temperature versus time in excess of that for noncombustible asbestos-cement board, was measured. These values, expressed in Btu, are listed in Table III, which also lists the maximum rate of heat release measured during the same flame spread test. The magnitude of these values depend upon the specimen thickness, upon the extent of ablation, char formation and similar processes, upon chemical treatments, and upon the ability of a coating to seal and protect the surface from

- 20 -

Fig. 10 Thermal Decomposition of Sample No. 36 Plasticized Poly(vinyl chloride) Sheet

- 21 -

- 22 -

TAI	BLE	Ι	Τ	Ι

Material No.	Total Heat <u>Release</u> Btu*	Max. Heat Release <u>Rate</u> Btu/min*	Material No	Total Heat <u>Release</u> Btu*	Max. Heat Release <u>Rate</u> Btu/min*
1	130	170	39	470	130
2	39	50	40	2	< 5
3	250	175	41	460	250
4	52	41	42	30	< 5
5	300	220	43	52	10
6	300	220	44	310	120
7	1010	480	45	330	130
8	560	330	46	620	80
9	410	120	47	150	30
10	690	310	48	730	200
12	550	65	49	720	170
17	940	140	51	1530	210
18		240	52	190	210
19	140	140	53	80	40
20	77	55	54	100	40
21	250	60	55	130	40
22	58	< 5	57	240	30
25	320	210	58	300	50
26	170	120	59	190	20
28	26	20	60	550	120
29	120	40	61	340	120
30	730	150	62	670	50
31	240	40	63	130	50
32	130	30	64	510	190
33	610	160	65	800	330
34	39	110	66	230	140
35	620	180	67	64	20
36		40	68	270	80
37		40	69	110	60
38	1250	720	70	39	95

TOTAL HEAT RELEASE AND MAXIMUM HEAT RELEASE RATE FAA Radiant Panel Data

*1 Btu = 1055 W·s; 1 Btu/min = 17.6 W

TABLE III (Continued)

		FAA Radiant Pan	el Data		
Material <u>No.</u>	Total Heat <u>Release</u> Btư ^ጵ	Max. Heat Release <u>Rate</u> Btu/min ^k	Material No.	Total Heat <u>Release</u> Btu*	Max. Heat Release <u>Rate</u> Btu/min*
71	64	30	130	480	40
72	540	90	131	440	40
73	1340	190	132	100	70
74	>2000	950	133	280	170
76	530	70	134	350	180
101	97	10	135	77	50
102	220	30	136	420	60
103	490	50	137	390	60
104	20	25	138	19	10
105	0	0	140	120	20
108	13	20	141	220	20
109	830	160	142	64	70
110	1570	220	143	170	20
111	1030	210	144	90	20
112	600	90	145	0	0
113	50	5	146	110	20
114	0	0	147	4650	500
115	0	0	148A	630	200
116	240	30	149	0	0
117	130	60	150	170	220
118A	50	10	151	290	100
119	77	10	152	760	90
120	0	0	153	60	80
121	220	30	154	600	90
122	580	60	155	100	70
123		670	157	110	30
124	13	10	160	460	70
125	90	10	161	110	40
126	0	0	161X	90	100
128A	220	220	163	20	10
129	370	40	164	720	120
1 Btu = 1	055 W·s; 1	Btu/min = 17.6 W			

TOTAL HEAT RELEASE AND MAXIMUM HEAT RELEASE RATE FAA Radiant Panel Data

* 1 Btu = 1055 W·s; 1 Btu/min = 17.6 W

24

progressive decomposition.

The results show that the rate of heat release ranged from 0 up to 950 Btu/min, and the total heat released was as high as 4650 Btu. For the materials tested, approximately one-third released 100 Btu or less

In general, the thicker the material, the greater the heat released, but not in direct proportion Certain materials, notably glass fiber fabrics and insulation, and other lightweight films and fabrics released very little heat under the standard radiant panel test exposure. Polyvinyl chloride and other chlorinated materials were noteworthy in their flame-inhibiting action which reduced or prevented the release of much of the available heat.

For thin materials, the type of backing or substrate and its thermal properties are important in governing flame spread behavior and heat release [11]

Scaling Factors

In the work described in this report, it was presumed that the test specimens were representative in thickness and density of the materials intended for actual use as interior finishes. For a few materials supplied in thicknesses greater than 1 inch, the test specimen was limited to a thickness of 1 inch by the size of the specimen holder. It should be evident that the density of smoke, the concentration of gaseous products, and the heat release characteristics are properties of the specimen as tested and will be different for other thicknesses and densities.

Limitations were previously noted to the use of specific optical density for extrapolating the smoke density measured in the laboratory test to other enclosure volumes and surface areas. Within these limitations, the relationship between the measured value of D and the geometrical factor $\frac{V}{LA}$ for various values of light transmission (or optical density) is shown in Fig. 12. The optical density level through which a lighted exit sign may be seen can vary over wide limits depending on the general illumination level, on the contrast threshold and the extent to which the observer's eyes have been dark-adapted, as well as on the irritating nature of the smoke. In Fig 12, five lines are shown for transmission values ranging from 80 to 2.5 percent (optical density 0.1 to 1.6) corresponding to a wide range of visual limits [3].

- 26 -

Using this figure, sample computations have been made in Table IV for 3 selected values of D. If it is assumed that a lighted exit sign can be seen when the transmission is down to 40% (optical density 0.4), and an aircraft cabin has a volume of 10,000 ft³ within which smoke is uniformly dispersed, then Table IV shows the estimated area A of material, the smoke from which may just begin to limit seeing the exit sign at various distances L.

Up to this point, only geometrical factors have been considered, but time is certainly important, and the choice of a critical specific optical density for each material can presumably also be based on a prescribed time period which is sufficiently long to permit escape or defensive action. From Table II, it may be noted that the time periods to attain a critical specific optical density of 16 ranged from 0.2 to over 20 minutes.

Although the three factors, total smoke accumulation (D), maximum rate of smoke accumulation (R), and the time period to reach a "critical" optical density (t^m) , are directly related to the smoke obscuration hazard, their relative weighting is not entirely obvious. One suggestion for a single overall hazard index based on the results of this test was made in the Appendix of Reference [3]. However, it should be emphasized that additional experimental verification would be desirable prior to establishing rigorous smoke hazard limits for interior materials.

This study was concerned with the limited problem of measuring the optical density of smoke as it relates to the obscuration of human vision. No attempt was made to evaluate complications due to eye irritations, to respiratory effects from inhaled smoke particles, or to hysteria or associated physiological or psychological factors.

The indicated concentrations of gaseous products listed in Table II represent values measured at the sampling location and are associated with the prescribed exposure conditions on a specimen of given exposed area (2-9/16 inches square) within a totally enclosed chamber of 18 ft³ volume. Specimens were tested in the thickness and weight supplied, which varied over a wide range. Concentration measurements were made periodically from the time when the optical density of the smoke approached its peak. Any realistic evaluation of the gas concentrations likely to be encountered in a real fire situation must take into account actual areas and thicknesses of the materials exposed and the volumes in which the gases are dispersed. Also of importance are the rate of fire growth, the effects of adsorption and reaction, the extent of ventilation, dilution, and/or application of extinguishing agents, and other factors outside the scope of this study. Where specimen area and chamber volume are the only variables and uniform mixing is assumed, an approximate relationship between the gas concentration measured in the smoke chamber and the projected concentration within a much larger chamber, such as an aircraft cabin, is given by

$$C_{\text{cabin}} = C_{\text{test}} \frac{V_{\text{t}}}{A_{\text{t}}} - \frac{A_{\text{c}}}{V_{\text{c}}}$$

TABLE IV

Critical (Projected) Surface Area of Material Burned in 10,000 ft³ Volume (for optical density = 0.4)

Specific	$\frac{V}{AL}$ (for OD = .4)	Light	Specimen
Optical		Distance	Area
Density D _s		L	A
10	25	3 ft	133 ft ²
10	25	10	40
10	25	30	13.3
10	25	100	4
50	125	3	26.7
50	125	10	8
50	125	30	2.67
50	125	100	0.8
100 100 100 100	250 250 250 250 250	3 10 30 100	13.3 4.0 1.3 0.4

28

- 29 -

This simply scales concentration (C) in direct proportion to the area A of specimen involved and in inverse proportion to the chamber volume V. As an example, the gas concentration in a 10,000 ft³ cabin is shown in Fig 13 for a series of lines corresponding to surface areas of 10, 100 and 1,000 ft².

It should be noted that such scaled estimates assume similar (or uniform) distribution of the gaseous components, and large differences may result in the case of active gases and vapors which tend to be adsorbed on surfaces, e.g. HF and $HC\ell$, and gases and vapors which tend to stratify in layers.

Finally, it should be noted that relationships between the indicated concentrations measured in the smoke chamber and physiological or toxicological effects are also outside the scope of this study. The table of toxicological data, assembled from open literature sources has been included for reference purposes only. Information on the combined,or synergistic, effects of several noxious components (including smoke particles), is apparently very limited.

CONCLUSIONS

Based upon the tests performed and an evaluation of the results, the following conclusions have been reached:

- Materials currently used as interior furnishings for aircraft cabins, and those being considered for future use, vary considerably in their decomposition and heat release rates at elevated temperatures, and in their production of smoke and potentially toxic products under simulated fire conditions. Under the conditions studied, certain materials have good heat stability properties and do not generate large quantities of smoke or high concentrations of the gaseous products selected for analysis.
- 2. The laboratory test method for generating smoke and measuring its optical density appears to be a useful tool for the quantitative classification of materials, and for the possible establishment of revised fire safety standards and criteria for controlling smoke production. Optical density is the single most characteristic measure of the visual obscuring quality of a smoke.
 - 3. For evaluating smoke production, both smoldering and active flaming conditions should be considered. For the majority of materials, more smoke was produced during the flaming exposure test. However, certain materials produced significantly more smoke in the absence of open flaming.
 - 4. Within the limitations and assumptions cited on page 5, the specific optical density of smoke measured in the laboratory may be extrapolated to cabin volumes and surface areas in order to provide guidelines for cabin area limitations, or to estimate time periods available for escape or defensive action.
 - 5. Indications of the concentrations of potentially toxic combustion products can be conveniently and inexpensively obtained during the smoke production test using calibrated commercial colorimetric tubes; however, these are suitable only where interferences by other gases are absent, and where precision is not of primary importance. The specific ion electrode is also a convenient method of measuring the concentrations of halogen acid gases.

Furthermore, if an attempt is made to relate the indicated concentrations measured in the smoke chamber in terms of toxicological limits, caution must be exercised It is essential that proper consideration be given to (a) scaling of the areas and volumes in the proposed situation, (b) the integrated dosage where concentration varies with time, (c) the synergistic effects of several components (and smoke particles), and (d) the effects of relative humidity, elevated temperature, stratification, adsorption on surfaces, and physiological factors not considered in this study.

RECOMMENDATIONS

Based upon the work described in this report, and the needs of the Federal Aviation Administration for establishing fire safety standards, it is recommended that:

- 1. The NBS laboratory test method be used for measuring the optical density of smoke produced by burning aircraft interior materials. Both active flaming and nonflaming (smoldering) exposure conditions should be employed. The selection of the most meaningful smoke criterion, e. g., total smoke accumulation, maximum rate of smoke accumulation, or the time period to a critical optical density -should be based on information and/or judgments of the operational conditions within actual aircraft.
- 2. Concurrent measurements of the concentrations of potentially toxic combustion products should be made. Where precision is not of primary importance and interferences (by other gases, high temperature, etc.) are absent, calibrated commercial colorimetric tubes may be used. However, additional studies should be undertaken to establish the accuracy and acceptable conditions for using such tubes. Also, other methods which may provide more accuracy and convenience in the measurement of combustion products should be investigated.
- 3. Additional studies be undertaken to establish and standardize laboratory methods for measurement of the heat release properties of materials.
- 4. The laboratory results on smoke production and the evolution of combustion products be verified by large-scale (model) tests with typical materials.

REFERENCES

- [1] Marcy, J. F., Nicholas, E. B. and Demaree, J. E., "Flammability and Smoke Characteristics of Aircraft Interior Materials" Federal Aviation Agency Technical Report ADS-3, Jan. 1964.
- [2] Marcy, J. F., "A Study of Air Transport Passenger Cabin Fires and Materials," Federal Aviation Agency Technical Report ADS-44, Dec. 1965.
- [3] Gross, D., Loftus, J. J. and Robertson, A. F., "A Method for Measuring Smoke from Burning Materials," American Society for Testing Materials Special Technical Publication 422, 1967.
- [4] a. Scott Draeger Multi-Gas Detector, distributed by Scott Aviation Corporation, Lancaster, N. Y.
 - b. MSA Colorimetric Gas Detector Tubes, Mine Safety Appliances Co., Pittsburgh, Pa.
 - c. Kitagawa Precision Gas Detector, Unico Model No. 400, Union Industrial Equipment Corp. Port Chester, N. Y.
- [5] Campbell, C., Gordon, S., and Smith, C. L., "Derivative Thermoanalytical Techniques - Instrumentation and Applications to Thermogravimetry and Differential Thermal Analysis," Anal. Chem. <u>31</u>, pp 1188-91, 1959.
- [6] Interim Federal Standard 00136 b (Com-NBS), Dec. 26, 1962.
- [7] Madorsky, S. L., "Thermal Degradation of Organic Polymers," 315 pp, Interscience (Wiley) 1964.
- [8] Ausobsky, S., "Evaluation of the Combustion Gases of Plastics," (in German), VFDB Zeitschrift, <u>16</u>, pp 58-66, 1967.
- [9] Coleman, E. H. and Thomas, C. H., "The Products of Combustion of Chlorinated Plastics" J. Appl. Chem. <u>4</u>, pp 379-383, 1954.
- [10] Fish, A., Franklin, N. H. and Pollard, R. T., "Analysis of Toxic Gaseous Combustion Products" J. Appl. Chem 13, pp 506-9, 1963.
- [11] Gross, D. and Loftus, J. J., "Surface Flame Propagation on Cellulosic Materials Exposed to Thermal Radiation," J. Res. NBS 67C, pp 251-258, 1963.
- [12] Kusnetz, H. L., Saltzman, B. E. and Lanier, M. E., "Calibration and Evaluation of Gas Detector Tubes," Ind. Hygiene J. pp 361-373 Oct. 1960.

- [13] Saltzman, B. E., "Preparation and Analysis of Calibrated Low Concentrations of Sixteen Toxic Gases," Anal. Chem <u>33</u>, pp 1100-1112, 1961.
- [14] Saltzman, B. E., and Gilbert, N., Am. Ind. Hyg. Assoc, J. <u>20</u>, pp 379-386, 1959.
- [15] Rechnitz, G. A. and Kresz, M. R., Anal. Chem. <u>38</u> p. 1786, 1966.

APPENDIX 1

GAS ANALYSIS

Colorimetric Indicator Tubes

The manufacturer provided general information on the detector tubes regarding their measuring range, interfering reactions, reuse and the effects of temperature and relative humidity. The upper and lower limits of the measuring ranges of these tubes and some references to the toxicological limits of these gases are summarized in Table I-1. With good quality control during manufacture and frequent calibration, specific tubes can give meaningful results. However, certain shortcomings may be noted. These include:

1. Variation of packing density within the tube and nonuniformity of indicator gel among the tubes. Since the adsorption rate of a sample gas by the gel depends primarily on the reacting surface area available per length of tube, a variable packing density would affect reproducibility.

2. Certain gases & vapors are not adsorbed by the precleaning layer but react similarly with the indicator as the gas of interest to produce an unexpected interference.

3. The transition zone of the discolored stain front makes it difficult to judge the exact demarcation line and thus introduces errors.

These shortcomings can be minimized for example, by frequent calibration to establish probable errors, by knowing the specific interfering gases in the sample not absorbed by the precleaning layer and the sensitivity of the tube to these gases; and by determining the concentration of the interference gas if any, found in the sample. With cumulative experience on using the tubes both during calibration and sampling, the probable error in judging the line of demarcation of the discolored section by an operator can be minimized. The merit of the colorimetric tubes as in any other analytical method should be judged by its performance on a specific gas. Sensitivity, accuracy and interference effects depend on the chemical system used in the tube and they are obviously different for different gases. An extensive review of some of the techniques and problems associated with these tubes is given by Kusnetz, et. al. [12].

Recommended Upper Temp. Limit (tube and test gas) ^O C 90 - 40 45 30 40 40 40 50 35 40	Nominal Range, Lower ppm 10 - 2 2 2 0.5 0.5 25 0.2 0.25 0.5 Upper ppm 3,000 - 30 500 150 50 10 700 30 75 15	$\frac{CO}{1000} = \frac{CO}{T_{A}^{PO}} = \frac{HC\ell}{T_{A}^{PO}} = \frac{HCN}{T_{B}^{PO}} = \frac{HCN}{HO} = \frac{HCN}{100} = \frac{HCN}{100} = \frac{HCN}{1000} = \frac{HCN}{1000} = \frac{HCN}{10000} = \frac{HCN}{1000000000000000000000000000000000000$	AND TOXICOLOGICAL DATA FOR SELECTED GASES
as) ^o C 90 - 40 45 30 40 40 40 50 35		ppm 10 - 2 2 2 0.5 0.5 25 0.2 0.25 ppm 3,000 - 30 500 150 50 10 700 30 75	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\frac{\text{AND TOXICOLOGICAL DATA FOR SELECTED GASES}}{CO} \frac{\text{AND TOXICOLOGICAL DATA FOR SELECTED GASES}}{Type} \frac{\text{NO+}}{B} \frac{100}{2} \frac{\text{NO-}}{100} \frac{\text{NO-}}{2} \frac{\text{NO-}}{200} \frac{\text{NO-}}{2} $		NITUDOVIJA

1-2

* Based on the following references:

Henderson, Y, Haggard, H.W.: Noxious Gases. Reinhold Publishing Corp., New York (1943) Elkins, H.B.: The Chemistry of Industrial Toxicology. John Wiley & Sons, Inc., New York (1959) American Conference of Governmental Industrial Hygienists: Document of Threshold Values. Cincinnatic. Ohio 45202 (1966 edition)

** Maximum average atmospheric concentration for 8-hr daily exposure adopted by American Conference of Governmental Industrial Hygienists, 1966. The advantages of the indicator tubes are convenience and simplicity, yielding immediate results with the avoidance of transfer vessels and other sampling problems. In the hands of an experienced operator, reasonable accuracy can be attained.

Of the colorimetric tubes used, tubes for four compounds have been calibrated and examined for interferences and temperature effect. For calibration purposes low concentrations of HC ℓ or HCN were prepared from a flow dilution system suggested by Saltzman [13]. The system consists of an asbestos plug which serves as a flow-limiting device [14], and a mixing chamber as shown on Fig. 1.1. Tubing to the asbestos flowmeter is 1 mm ID Teflon tubing to minimize dead volume. The pressure regulating cylinder was filled with concentrated H₂SO₄ for metering the HC ℓ gas. Flows were calibrated by attaching a graduated 0.1 ml pipet to the meter outlet and timing with a stopwatch the movement of a drop of mercury past the graduations. Flow rates as low as 0.01 cm³/min can be achieved with good long term reproducibility.

The degree of dilution of pure HCL from the tank was controlled by the asbestos plug and the diluting gas metered by a rotameter. Mixture concentration could be varied from 10 to 1000 ppm. A needle valve controlled the flow rate to the indicator tube. The pressure drop across the colorimetric indicator during calibration was balanced by applying an appropriate vacuum at the other end of the tube. This arrangement avoids creating any disturbance to the diluting system when the tube is inserted to start a calibration.

Low concentrations of HCN were generated by aeration of a 4.6 molar solution of KCN in a midget impinger. A thermostated water bath surrounding the bubbler and air supply condenser maintained a temperature of 30 °C (86 °F). The system produced an output of 100 ppm and further dilution was necessary for lower concentrations. Both HCL and HCN systems were very stable and consistent.

A static method using a FEP Teflon 5-mil-thick collapsible bag was used to generate low concentrations of non-reacting gases. Under this arrangement, the sample gas was deposited by a gas-tight microsyringe and diluted with air or other gases from a one-liter syringe. This method is not applicable to HCL or HCN because of losses resulting from adsorption, but gave satisfactory results with CO from 10 to 1000 ppm.

Specific Ion Electrode

A permeable membrane electrode for chloride ions(after Pungor) was described recently [15] and was used in a system to determine the

HCl concentration in a gas sample potentiometrically. This method has higher accuracy, range and reliability than that of colorimetric indicator tubes. Its working range is between 20 and 20,000 ppm for a 100 cm^3 gas sample. For lower concentrations, a larger sample must be used.

In practice, the highly water-soluble HCL gas and vapor in the 100 cm³ sample was totally absorbed when the sample flowed at a rate of 100 cm³/min through Teflon tubing (5.3 mm i.d.) containing about 40 mg of loosely packed glass wool wetted with 0.1 cm³ water. The exposed glass wool was carefully transferred to a Teflon cup of small internal volume. Water was added to make a total solution of 1 cm³ before insertion of the specific ion electrode, and a low-leakage, smalldiameter-tip, conventional calomel-KCL reference electrode. A high impedance differential voltmeter or an expanded scale pH meter may be used to measure the emf between the electrodes. The specific electrode has a sensitivity limit of 10^{°°} mole per liter for chloride ion in solution and an equilibrium response time of about 1 min. It consists essentially of a polymeric silicone rubber membrane impregnated with particles of silver chloride precipitate. The membrane covers the tip of a small diameter glass tube filled with a chloride solution. Fig. 1.2 shows the calibration curve of emf in mV and HCL concentration in ppm calculated on the basis of a 100 cm³ gas sample absorbed in a 1 cm³ solution. The curves were based on measurements made with solutions of known HCL concentrations.

Known interferences of bromide or iodide ions may be considered negligible if their concentrations are less than one-tenth of the chloride ion concentration [15]. In most fire gas or smoke chamber analyses this problem would not arise. In cases where the concentration of a bromide ions is likely to be the same order as that of chloride, a bromide specific electrode can be used. This electrode is not affected by chloride ion concentrations as high as 50 times that of bromide.

Table I-2 shows the type of indicator reagents used in the detector tube. It also lists the known components and concentrations which would cause sufficient interference to give erroneous readings. The precleaning layer serves to remove the interfering components and the table shows the maximum concentrations that can be removed. The data are based on information furnished by the tube manufacturer as well as NBS data showing the lack of mutual interference among the major components of HCl, HCN and CO. Except for H_2S which apparently poisons the reactive surface in the HCl tube, other interferences did not significantly alter the usefulness of those colorimetric tubes used in the present smoke chamber study.

Fig. 1.2 Measured Emf as a Function of HCl Concentration in Gas Phase Based on HCL in a 100 cm³ Sample Absorbed by 1 cm³ of Water

	Nomínal Conc.			
Tube	Range ppm	Indicating Reagents	Interfering Components	Non-Interference
**HCL Type A	2 - 30	Organic Metal Salt to react with CL	H ₂ S > 20 ppm, no HC& sensitivity. (C& ₂ , NO ₂ , NO) \geq HC&, reading will be low HF > 3 x HC&, reading will be high H ₂ O > 70% RH reading will be low H ₂ O < 30% RH reading will be high	HCN, CO, SO ₂ , SO ₃
HC <i>l</i> Type B	2 - 500	Congo red on beaded alkali salt	Any strong acid gas	
NOH * *	2 - 150	Hg salt to release acid gas	$\begin{array}{llllllllllllllllllllllllllllllllllll$	
** CO	10 - 3000	Iodine Pentoxide Selenious Dioxide Sulfuric Acid	Saturated and unsaturated Hydrocarbons > 4000 ppm Hydrocarbons to CO ratio > 30.	H ₂ O, HCL, and HCN adsorbed by precleaning layers (Watch precleaning layer
°HN	25 - 700	Gold Chloride	Aliphatic Amines H2S > 50 ppm	saturation by color change) Hydrocarbons
HF	1 - 15	Alizarin-Zirconium Complex	None known Specific for HF	HC1, S02, N02, CO
N0+N02	0.5 - 10	Diphenylbenzidine	$\frac{\text{HC}l}{\text{NO}_2} > 270 \qquad \frac{\text{C}l_2}{\text{NO}_2} > 2$	
so ₂	5 - 1500	Iodate	Reducing Compounds	

Table I-3 shows some of the basic and calibration data for the colorimetric indicator tubes used. Included are the concentration ranges for which the tubes are rated and the sample volume and measured sampling rate for which the predetermined scale calibration holds. The length of indicating layer compared with the maximum of the concentration range indicates the resolution of the tube. Transition zone is a subjective estimate of the length between complete color change to no change which affects the reading error. The calibration ratios were based on the average of three separate runs for each of the stated concentrations. The method of preparation of an actual concentration of a single component in an atmospheric air mixture was given in the previous section. Unlike a previous study where several disinterested observers were asked to judge the demarcation front of the color change [12], the present results were based on the observation of one individual only. With the exception of the type B HCL tube which was +90% in error, all other errors fell within a $\pm 20\%$ range.

	Concentration Samule	Samule	Samultno	Packing Length	Length	Transition Zone	on Zone	Concer	Concentration	
Tube	Range	Volume	Rate	Precleaning	Indicating	Length	Error	Actual	Indicated #	Error
	mdd	cm ³	seconds per	ШШ	ш	H	%	mdd	mdd	%
HCL	2- 30	1000	11	30	60	4	±7	5		
Type A								25	30	+20
	10 2004							86	95	+10
	TO- 200*	100						200	180	-10
HC <i>l</i> Type B	2- 100 20- 500	500 100	30	0	65	2	H-3	300	570	+90
CO	10- 300 100-3000	1000 100	27	40	50	5	±4	50 100 200 500 1000	120 220 500 1000	+20 +10 0
HCN	2- 30 10- 150	500 100	10	30	50	9	1 8	5 30 75	35	+20
HF	1- 15 5- 150*	1000 100	Ŋ	0	60	С	±5	16	14	- 13
NO + NO ₂	0 • 5 - 10 5 - 50*	50 0 100	6	30	60	2	±8			
S02	5- 150 50-1500	1000 100	12	0	65	4	+6			
NH 3	25- 700	1000	6	0	75	С	77			

TABLE I-3 COLORIMETRIC INDICATOR TUBES

APPENDIX 2

TYPICAL SMOKE ACCUMULATION CURVES FOR SELECTED MATERIALS

D_s Specific optical density = $\frac{V}{AL}$ LOG $\frac{100}{T}$

F Flaming exposure

3

NF Nonflaming (smoldering) exposure

Fig. 2.1 Typical Smoke Curves - Fabrics

Fig. 2.2 Typical Smoke Curves - Rugs

Fig. 2-3 Typical Smoke Curves - Sheets

Fig. 2-4 Typical Smoke Curves - Sheets, Laminates

Fig. 2.5 Typical Smoke Curves - Pads, Insulation, Assemblies

• 0 /	Approximate Chemical Composition (Based on IR Spectroscopy)	Woo1/Cotton (75:25)	Modacrylic	Modacrylic/nylon/cotton	Polyamide (Nylon type)	Polyvinylchloride/Methyl Methacrylate/Ester plasticizer on Cotton	Polyester Plasticizer (Phthalate-type), possible PVC, on cotton	Acrylonitrile/Butadiene/Styrene Polyethylene terephthalate polyester Poly methyl methacrylate Poly vinyl acetate Poly vinyl chloride
NOI	Present or Intended Use	Drapery	Drapery	Drapery	Upholstery	Upholstery	Upholstery	ETP ETP MMA VA VC
APPENDIX 3 MATERIALS DESCRIPTION	Designation	e Fabric (UC)	e Fabric (UC)	L- Fabric (UC)	Fabric (UC)	Fabric (C)	Fabric (C)	Designation Coated A Uncoated P Flexible P Semi-rigid P Rigid Unpadded Fire-retardant treated
W	Color and Surface	L1ght-Blue	Light-Blue	Blue(Multi- Color) pattern	Tan Corduroy	Blue Matte	Gold Matte	D F S R G P R S R G P R S R G P R S R G P R G P R S R G P R G P R G P R
I	Unit* Weight oz/yd ²	11	9.6	14	13	12	26	<pre>ed,coated) padded) tible, tigid) tigid) g/cm²</pre>
TABLE I	Thickness inch	.035	.030	.055	• 050	.030	.045	 Fabric (uncoated, coated) Rug (unpadded, padded) S3 - Sheet (flexible, semi-rigid, rigid) L3 - Laminate (flexible, semi-rigid, rigid) rd² = 3.39 x 10⁻³ g/cm²
	Code	F-1	F-1	н Ч	Г-Ч	F-2	F-2 .	F1,F2 - F R1,R2 - R S1,S2,S3 L1,L2,L3 1 oz/yd ²
	No.	1	2	n	⊲ † 3-1	Ŋ	9	-><

	Approximate Chemical Composition (Based on IR Spectroscopy)	Pile: Modacrylic /Acrylic Backing: Polyester fiber Pad: Polyester urethane foam	Pile: Copolymer Poly(propylene-Butylene) Center: Cellulosic Backing: Polyethylene	PVA/ABS, china clay pigmented possible PVC.	ABS (~25%:10%:65%)	ABS (~25:10:65)	Copolymer: PVC/Poly methyl methacrylate(~95:5)		
MATERIALS DESCRIPTION (continued)	Present or Intended Use	Flooring	Flooring	Panel and Door Covering	Food Trays, Window frames	Food Trays, Window frames	Ceilings, Seat panels		
RIALS DESCRIPT	Designation	Rug (P)	Rug(UP)	Sheet (F)	Sheet (SR)	Sheet (R)	Sheet (R)		
MATE	Color and Surface	Blue/Gray Loop	Blue/Green Loop	Tan Matte	Dark Gray Matte	Green Polished	Tan Matte	abbreviations	
I	Unit Weight oz/yd ²	62	31	97	00	67	81	list of abb	
TABLE	Th1ckness inch	• 33	.18	• 046	.045	.080	.080	p. 3-1 for li	
	Code	R-2	R-1	S - 1	S - 2	N 13	2 1 2	See	
	No.	~	œ	б 3-2	10	11	12		

		TABLE I	I	MATE	MATERIALS DESCRIPTION	NO	Page III
No.	Code	Thickness inch	Unit Weight oz/yd ²	Color and Surface	Designation	Present or Intended Use	Approximate Chemical Composition (Based on IR Spectroscopy)
13	S - 2	.030	26	Gold Shiny	Sheet (SR)	Trim	PVC and Polyvinyl acetate base with some ABS plastic added Film: Polyethylene terephthalate (PETP) polyester
14	S - 2	.020	20	White/Green Smooth	Sheet (SR)	Sides,Ceiling, Seat panels	Polyvinyl chloride/vinyl acetate (~89:11)
£1 3−3	S-1	4.0	110	White Open cell	Foam (F)	Seat cushion Padding	Polyether urethane
16	R-1	.22	44	Blue Loop	Rug (UP)	Flooring	Wool
17	R-2	.43	83	Mult1-Color Loop	Rug(P)	Flooring	Pile: Wool Back: Polyester Pad: Urethane foam
18	R-1	.22	59	Black/Gray Loop	Rug (UP)	Flooring	Modacry11c/Acry11c
19	کی ۱ ا	.21	9.2	Green Open cell	Pad (F)	Carpet underlay	Polyester urethane foam
	See p.	3-1	for list of abbreviations	eviations			

ŝ.

Page IV	Approximate Chemical Composition (Based on IR Spectroscopy)	Face: Polyvinyl acetate with trace of ABS covered with PETP Polyester Back: Aluminum sheet	Face: Vinyl Chloride/Acrylate copolymer (80:20) on Back: Aluminum sheet	Face: PETP Polyester Back: Vinyl acetate, PVC copolymer	Polyamide (nylon type)	Polyvinyl chloride, ABS terpolymer (94:6)	Face: Melamine formaldehyde Back: Urea formaldehyde	Face: Melamine formældehyde Back: Urea formaldehyde	
NO	Present or Intended Use	Panels - Overhead and sides	Panels - Overhead and sides	Window shades	Assist handles	Seat track covers	Galley area	Galley area	
MATERIALS DESCRIPTION	Designation	Laminate(R)	Laminate (R)	Laminate (F)	Assembly (molded)	Assembly (molded)	Laminate (R)	Laminate (R)	
MATE	Color and Surface	Gold Embossed	Tan Dull Brushed	Aluminum Matte Shiny	White Smooth	Green Smooth	Gray Glossy	Blue Glossy	
	Unit Weight oz/yď	68	62	8.1			39	35	
. TABLE I	Thickness inch	•042	. 044	600.	Irregular	Irregular	.035	.032	
	Code	L-3	L-3	L-1	A	¥	L-3	L-3	
	No.	20	21	5 3-4	23	24	25	26	

*

	Approximate Chemical Composition (Based on IR Spectroscopy)	Rigid part: ABS (40:40:20) possible PVC Flex part: Plasticized PVC possible some vinyl acetate	Modacrylic	Modacrylic	Face: Coated glass fabric (Polyester or cross- linked Acrylic) Core: Paper honeycomb Back: Plastic-impregnated glass fabric	Vinyl chloride/Acrylate, possible Polyvinyl acetate	Vinyl Chloride/Acrylate copolymer film on aluminum sheet	
NOI	Present or Intended Use	Passenger service units	Drapery	Drapery	Ceilings, Bulkheads	Lowered ceilings	Lowered ceilings	
MATERIALS DESCRIPTION	Designation	Sheet (SR)	Fabric (UC)	Fabric (UC)	Assembly (honeycomb)	Sheet (F)	Laminate (R)	
MATI	Color and Surface	White	Tan/Gold Trace	Turquoise, Gold Trace	Tan Matte	White Matte	Lt. Blue Matte	viations
	Unit Weight oz/yď		8.0	6 °3	62	9°6	75	t of abbre
TABLE I	Thickness inch	Irregular	.028	.030	•41	.010	.045	. 3-1 for list of abbreviations
	Code	S - 2	н Н	F-1	¥	S - 1	L-3	See p.
	No.	27	28	67 3-5	30	10	32	

	Approximate Chemical Composition (Based on IR Spectroscopy)	ABS (40:40:20), possible PVC	Vinvl chloride/ Acrylate	copolymer on glass fabric(28%) plus pigment (13%)	ABS (40:40:20), possible PVC		Plasticized PVC Plasticized d1 = (2 Ethv1-Hexv1)	Phthalate	ABS (40:40:20)/PVC		Methyl methacrylate/Methyl acrylate copolymer (90:10)	ABS (40%: 40%: 20%) possible PVC	
NOI	Present or Intended Use	Hatrack	IInderside	hatrack bullnose	Toilet floor pans		Ceiling panel		Magazine rack		Window pane	Control panel	
MATERIALS DESCRIPTION	Designation	Sheet (R)	Fahric (C)		Sheet (R)		Assembly (molded)		Sheet (R)		Sheet (R)	Sheet (R)	
MAT	Color and Surface	White Matte	La	Smooth	Gray	Dull	Tan	Smooth	White	Matte	Clear Polished	Tan Matte	
I	Unit Weight oz/yd ²	16	01	0	06				92		53	62	
TABLE I	Thickness inch	.093	010	0 4 0	.095		.063		.097		• 063	.064	
	Code	s S	6 4	7 - 1	S-3		A		S-3		S - 3	S - 3	
	No.	33	76	† 0	35	3 -6	36		37		38	39	

	Approximate Chemical Composition (Based on IR Spectroscopy)	Polyvinyl fluoride	Face: ABS Back: Polyether urethane foam	Glass fiber (plus organic binder)	Glass fiber with lead sheet	PVA/ABS, china clay pigmented, possible PVC	PVC/ABS	PVC/PMMA (90:10)	Cotton	Face: PVC/ABS Back: Polyurethane	
LON	Present or Intended Use	Protective coating	Bullnose	Insulation	Insulation	Seat panels	Seat panels	Seat panels	Lining for seat pads	Seat panels	
MATERIALS DESCRIPTION	Designation	Film (F)	Assembly (molded)	Pad	Assembly	Sheet(F)	Sheet (R)	Sheet(R)	Fabric (UC)	Assembly	
MATE	Color and Surface	Clear Smooth	Tan	Yellow Fibrous	Yellow Fibrous	Tan Matte	Tan Matte	White Matte	White Matte	Tan Matte	
Ţ	Unit Weight oz/yď	1.3	95	35	150	44	60	55	4.0	82	
TABLE	Thickness inch	.002	.35	1.3	2.5	• 046	• 063	.057	.012	.57	
	Code	S-1	A	A	A	S-1	S-3	S-3	بستا ا	A	
	No.	40	41	42	۳ 4 3-	7 7	45	97	47	4,8	

	Approximate Chemical Composition (Based on IR Spectroscopy)	Face: PVC/PMMA (90:10) Back: Urethane foam - Polyether type	Urethane foam - polyether type		Plasticized foam containing PVC/PVA and nitrile groups	Urethane foam - polyether type (FR)	Face: Filled rubber on Nylon 6-6 fabric Back: Glass fiber batt	Face: Organic-filled nylon fabric Back: Glass fiber batt	Polyethylene film over nylon fabric (filled rubber)	Organic-filled nylon 6-6 fabric	Plasticized PVC on Glass fabric	
ION	Present or Intended Use	Seat panels	Seat construction		Seat construction	Seat construction	Insulation	Insulation	Cover for insulation batt	Cover for insulation batt	Bulkhead assembly Lining	
MATERIALS DESCRIPTION	Designation	Assembly	Sheet (R)		Foam (SR)	Pad (F)	Assembly	Assembly	Fabric (C)	Fabric (C)	Fabric (C)	
MATH	Color and Surface	White Matte	White	Open cell	White Closed cell	White Open cell	Tan Smooth	Blue Smooth	Tan Smooth	Lt. Blue Smooth	Green Smooth	
-	Unit Weight oz/yd ²	120	35		88	06	77	28	4.2	2.9	6.1	
TABLE	<u>Thickness</u> inch	.52	.60		1.0	4.0	3.0	1.3	.004	.004	• 006	
	Code	¥	S - 3		S-2	S - 1	A	A	F-2	F-2	F-2	
	No.	49	50		51	22 3-6	23	54	55	56	57	

÷

TABLE I

MATERIALS DESCRIPTION

	Approximate Chemical Composition (Based on IR Spectroscopy)	Modacry11c/Nylon/Cotton	PVC/PVA (89:11)	Plasticized PVC/PVA with ABS		PVC/PVA (Small amount of ABS)	Polyvinyl Butyral film on PVC/PVA (90:10)	Modacry11c/Polyester	Modacry11c/acry11c	Modacry11c/acry11c	Plasticized PVC
ION	Present or Intended Use	Dтарегу	Partitions	Side panels		Side panel	Window panel	Drapery	Flooring	Flooring	Sidewall
MATERIALS DESCRIPTION	Designation	Fabric (UC)	Sheet (F)	Sheet (R)		Sheet (R)	Sheet (R)	Fabric (UC)	Rug (UP)	Rug (UP)	Sheet (F)
MAT	Color and Surface	Blufsh Multf- colored Weave	White/color pattern	Gold	Glossy	Blue Glossy	White with pattern	Yellow/ Gold trace	Blue/Green Loop	Brown/white/ Rug Black loop	Tan/Yellow Burlap
ц	Unit Weight oz/yd ²	14	16	64		62	70	9.5	64	41	25
TABLE I	Thickness inch	• 054	.020	.060		.060	.069	.030	• 33	.23	.032
	Code	F - 1	S-1	S-3		S - 3	s - 3	F-1	R-1	R-1	S-1
	No.	58	59	60	3-9	61	62	63	64	65	66

	Approximate Chemical Composition (Based on IR Spectroscopy)	Polyester plastic filled Glass fiber fabric	Face: PVC/PVA (89:11) Back: Cotton fabric and paper	PVC/PVA	Face: Acrylate Back: PVC/PVA	PVC/PVA (93:7)	Face: PVC/PVA Back: ABS/PVC	ABS/PVC	Methyl Methacrylate	Cotton/Nylon (Small amount of Polyester)	
NO	Present or Intended Use	Baggage liner	Sidewall, parti- tion liner	Sidewall, parti- tion liner	Sidewall, parti- tion liner	Sidewall, parti- tion liner	Door liners	Cockpit liner	Window panes	Upholstery	
MATERIALS DESCRIPTION	Designation	Laminate (SR)	Laminate (SR)	Laminate (SR)	Laminate (SR)	Laminate (SR)	Laminate (R)	Sheet (R)	Sheet (R)	Fabric (UC)	
MATE	Color and Surface	White Burlap	Blue/White/ Yellow Simulated fabric	Blue/White Simulated fabric	Gray Glossy	Tan/White Embossed	Red Matte	Gray Glossy	Clear Glossy	Turq u oise Corrugated	viations
	Unit Weight oz/yď	24	34	24	28	31	71	110	077	19	: of abbre
TABLE I	Thickness	.022	• 038	.026	.031	.033	.075	.11	.50	.060	. 3-1 for list of abbreviations
	Code	L-2	L-2	L-2	L-2	L-2	L-3	S - 3	S - 3	F-1	See p.
	No.	67	68	69	۲ 3-10	71	72	73	74	75	

	Approximate Chemical Composition (Based on IR Spectroscopy)	Face: Acrylic/vinyl coating over plywood (paper) Core: Paper with cresolformaldehyde resin adhesive	Methyl methacrylate	Polyamide (Aromatic-type)	Polyamide (Aromatic-type)	Chlorinated PVC	Glass fabric (100%) Bonded to Glass-fiber batt	Aluminum on asbestos	Poly (diphenylo1 propane) carbonate	Modacry11c (100%)	Modacry11c (100%)	Poly (phenylene oxide)	
NOI	Present or Intended Use	Ceiling panel	Window panes	Drapery	Drapery	Foam Insulation	Wall Insulation	H1gh temperature liner	Window panes Fabricated parts	Drapery	Drapery	Paneling	
MATERIALS DESCRIPTION	Designation	Assembly (Honeycomb)	Sheet (R)	Fabric (UC)	Fabric (UC)	Foam (R)	Assembly	Fabric (C)	Sheet (R)	Fabric (UC)	Fabric (UC)	Sheet (R)	
MAT	Color and Surface	White Smooth	Clear Polished	White	Green	White Porous	White Embossed	Alumainum Glossy	Clear Glossy	White	Orange	Yellow Glossy	viations
L	Unit Weight oz/yď	76	180	4.4	6.1	28	42	26	120	5.8	5.9	62	t of abbre
TABLE I	Thickness inch	. 38	.18	.015	.015	1.0	1.0	.033	.13	.013	.013	.080	See p. 3-1 for list of abbreviations
	Code	Ą	S I S	F-1	F-1	S - 3	A	F-2	S - 3	F-1	F-1	S - 3	See p
	No.	76	100	101	102 w	1103	104	105	106	107	108	109	

	Approximate Chemical Composition (Based on IR Spectroscopy)	PVC/PMMA plus ABS	PVC/PMMA plus ABS	Polysulfone	Glass fiber (100%)	Glass fabric coated with Acrv11c (Arometic classic	Poly (difluorochloroethylene)	Polyamide (Aromatic type)	PVC/Poly(vinylidene chloride)	Polytetrafluoroethylene films o polyimide	
LION	Present or Intended Use	Paneling	Paneling	Fabricated parts	Seat padding, Wall insulation	Headliner	Protective cover	Panel sub-strate	Paneling	High temperature insulation	
MALEKIALS DESCRIPTION	Designation	Sheet (R)	Sheet (R)	Sheet (SR)	Pad	Fabric (C)	F11m (F)	Sheet (SR)	Sheet (R)	Sheet (F)	
HIN	Color and Surface	Dk. Gray Matte	Green Matte	Clear Glossy	White Fluffy	White Matte	Clear Smooth	Tan Smooth	White Gloosy	Amber Clear	Glossy
	Unit Weight oz/yd ²	110	57	54 18	11	7.8	2.2	17	50	2.1 3.5	۰ ۲
	Thickness inch	•13	.060	•060 •020	.30	.010	.0015	.020	.045	.002 .005 .003	
	Code	S - 3	S - 3	S-2	S-1	F-2	S - 1	S-2	S - 3	S-1	
	No.	110	111	112A B	113	711 3-12	115	116	117	118 A B C	

MATERIALS DESCRIPTION

TABLE I

over

	Approximate Chemical Composition (Based on IR Spectroscopy)	Glass fabric (97%) with organic finish	Asbestos fiber	Polyamide (Aromatic type)	Polyvinyldichloride	Chloroprene	Plasticized poly(vinylidene chloride)	Glass fabric (97%) with organic finish	Glass fabric (83%) with organic finish	Face: Plasticized PVC/PVA (90:10) Back: Polyamide (Aromatic type)	Polyether Urethane (FR)	Polyether Urethane
ION	Present or Intended Use	Headliner	Insulation	Panel Sub-strate	Paneling	Seat padding	Wall covering	Headliner	Headliner	Paneling	Seat padding	
MATERIALS DESCRIPTION	Designation	Fabric (C)	Pad	Sheet (R)	Sheet (R)	Fоат (F)	Fabric (UC)	Fabric (C)	Fabric (C)	Sheet (SR)	Foam (F)	
MATH	Color and Surface	Blue	Gray F1brous	Tan Smooth	Gray Gl os sy	Black Open cell	Maroon Glossy	Lt. Green Glossy	Lt. Gray Glossy	Blue Matte	White Onen cell	White White Open cell
	Unit Weight oz/yď	5.0	20	64	130	380	9.2	4.0	4.2	29	89	67 t of abbre
TABLE I	Thickness inch	.007	.23	. 063	.11	4.0	.012	• 005	.006	.034	A 4.0	B 4.0 67 White White Open ce See n. 3-1 for list of abbreviations
	Code	F-2	S-2	2 1 1	S -3	S-1	F-1	F-2	F-2	S-2	S-1	с С
	No.	119	120	121	122	1 23	с 124	125	126	127	128	

Approximate Chemical Composition (Based on IR Spectroscopy)	Copolymer of Tetrafluoro- ethylene/Vinylidene fluoride	Chlorosulfonated polyethylene	Chloroprene	Modacrylic and Metallized fiber	Face: Plasticized PVC/PVA Back: Polyamide(aromatic type)paper	Face: Plasticized PVC/PVA and cotton fiber Back: Polyamide(aromatic type)paper	Face: PVC/PVA (90:10) Back: Polyamide(aromatic type)paper	Plasticized PVC/PVA Top Coating - mostly plasticized	Plasticized PVC/PVA (90:10) over pigmented ABS, asbestos-filled	
Present or Intended Use	Elastomer, Seals	Elastomer, Gaskets	Elastomer, Hose s	Drapery	Dado paneling	Hatra c k	Paneling Bulkhead Dividers	Flooring	Window reveals Dado, Seat backs	
Designation	Sheet (F)	Sheet (F)	Sheet (F)	Fabric (UC)	Laminate (F)	Laminate (F)	Laminate (SR)	Laminate (R)	Laminate (R)	
Color and Surface	Black Smooth	Tan Smooth	Black Smooth	Green	Copper Glossy	Lt. Tan Glossy	Blue/White pattern Smooth	Lt.Gray/Gold pattern Rough	Clear/White/ Blue Smooth	viations
Unit Weight oz/yď	66	83	82	8.7	36	27	26	84	72	t of abbre
Thickness inch	.071	.067	.065	.028	.040	.032	.029	660 *	.074	. 3-1 for list of abbreviations
Code	S-1	S-1	S-1	F-1	L-1	L-1	L-2	L-3	L-3	See p.
No.	129	130	131	132	က္လ ၂ ၁-14	134	135	136	137	
	CodeThicknessUnitColor andPresent orApprCodeThicknessWeightSurfaceDesignationIntended Use(BasedInchoz/ydeoz/yde(Based(Based(Based)	CodeThicknessUnitColor andPresent orInch0z/ydrSurfaceDesignationIntended UseS-1.07199BlackSheet (F)Elastomer, Seals	CodeThicknessUnitColor andPresent orinch $oz/ydeSurfaceDesignationIntended UseS-1.07199BlackSheet (F)Elastomer,S-1.06783TanSheet (F)Elastomer,S-1.06783TanSheet (F)Elastomer,$	CodeThicknessUnit WeightColor and SurfacePresent or Intended UseS-1.07199BlackSheet (F)Elastomer,SealsS-1.07199BlackSheet (F)Elastomer,SealsS-1.06783TanSheet (F)Elastomer,GasketsS-1.06582BlackSheet (F)Elastomer,Gaskets	CodeThicknessUnit inchColor and oz/ydrPessionationPresent or Intended UseApproximate Chemical CompositionS-1.07199BlackSheet (F)Elastomer, Gastomer, Sheet (F)Elastomer, GastesSealsComposition CompositionS-1.07199BlackSheet (F)Elastomer, GastesSealsCopolymer of Tetrafluoro- ethylene/Vinylidene fluoriS-1.06783Tan SmoothSheet (F)Elastomer, GasketsSealsCopolymer of Tetrafluoro- ethylene/Vinylidene fluoriS-1.06583Tan SmoothSheet (F)Elastomer, GasketsChlorosulfonated polyethyl GasketsF-1.0288.7GreenFabric (UC)DraperyModacrylic and Metallized	No.CodeThicknessUnit oz/ydr oz/ydrColor and SurfacePresent or Intended UsePresent or (Based of (Based of (Based of))129S-1.07199Black SmoothSheet (F)Elastomer, GasketsSealsCopoly ethylei130S-1.07199Black SmoothSheet (F)Elastomer, GasketsCopoly ethylei131S-1.06783Tan SmoothSheet (F)Elastomer, GasketsChloroi131S-1.06582Black SmoothSheet (F)Elastomer, GasketsChloroi132F-1.05882Black SmoothSheet (F)Elastomer, GasketsChloroi133I-1.04036Copper CoperLaminate (F)Dado panelingPrace:133I-1.04036Copper CoperLaminate (F)Dado panelingPrace:	CodeThicknessUnit oz/yd*Color and SurfacePessignationPresent or Intended UseApprid (Based of (Based of (Based of))S-1.07199BlackSheet (F)Elastomer, SealsCopolyrS-1.07199BlackSheet (F)Elastomer, SealsCopolyrS-1.06783TanSheet (F)Elastomer, SealsCopolyrS-1.06783TanSheet (F)Elastomer, SealsCopolyrS-1.06783TanSheet (F)Elastomer, SealsChloroS-1.06783TanSheet (F)Elastomer, SealsChloroS-1.06582BlackSheet (F)Elastomer, SealsChloroF-1.0288.7GreenFabric (UC)DraperyModacryL-1.04036CopperLaminate (F)Dado panelingBack:L-1.03227Lt. TanLaminate (F)HatrackFace:Lot.03227Lt. TanLaminate (F)HatrackBack:	No.CodeThicknessUnitColor and or/ydfDesignationPresent or inched UseApprid129S-1.07199BlackSheet (F)Elastomer, Seals(Based (Based (Base	No. Code inch Thickness ozyd Unit Surface ozyd Color and Surface Present or Intended Use Apprid 129 8-1 .071 99 Black Sheet (F) Elastomer, Seals (Based ethyles) 130 8-1 .067 83 Tan Sheet (F) Elastomer, Seals Copolyr 131 8-1 .067 83 Tan Sheet (F) Elastomer, Seals Copolyr 131 8-1 .067 83 Tan Sheet (F) Elastomer, Seals Copolyr 132 F-1 .063 82 Black Sheet (F) Elastomer, Seals Coporo 133 I-1 .063 87 Green Fabric (UC) Drapery Chioro 133 I-1 .040 36 Coper Laminate (F) Dado paneling Back: 134 I-1 .032 27 It. Tan Laminate (F) Back Face: 134 I-1 .032 26 Blue/White <td< td=""><td>No. Code Inch Thtekness acyds Unit Surface ozyds Color and Surface Designation Present or Intended Use Appridation 129 S-1 .071 99 Black Sheet (F) Elastomer, Seals Copolyr 130 S-1 .071 99 Black Sheet (F) Elastomer, Seals Copolyr 131 S-1 .067 83 Tan Sheet (F) Elastomer, Seals Copolyr 131 S-1 .067 83 Tan Chloror Gaskets Chloror 133 L-1 .063 8.7 Creen Fabric (UC) Drapery Modacry Chloror 133 L-1 .029 8.7 Creen Fabric (UC) Drapery Modacry Back: 134 L-1 .032 Z7 Lr. Tan Laminate (F) Bado paneling Back: 135 L-1 .032 Lr. Tan Laminate (F) Bado paneling Back: 14 Lolossy Laminate (F</td></td<>	No. Code Inch Thtekness acyds Unit Surface ozyds Color and Surface Designation Present or Intended Use Appridation 129 S-1 .071 99 Black Sheet (F) Elastomer, Seals Copolyr 130 S-1 .071 99 Black Sheet (F) Elastomer, Seals Copolyr 131 S-1 .067 83 Tan Sheet (F) Elastomer, Seals Copolyr 131 S-1 .067 83 Tan Chloror Gaskets Chloror 133 L-1 .063 8.7 Creen Fabric (UC) Drapery Modacry Chloror 133 L-1 .029 8.7 Creen Fabric (UC) Drapery Modacry Back: 134 L-1 .032 Z7 Lr. Tan Laminate (F) Bado paneling Back: 135 L-1 .032 Lr. Tan Laminate (F) Bado paneling Back: 14 Lolossy Laminate (F

TABLE I

TAT

	Approximate Chemical Composition (Based on IR Spectroscopy)	Polyamide (Aromatic type) Cotton (50%;50%)	Glass fabric (60%) coated with Polyvinylidene fluoride	Cotton	Polysulfone	(Urea formaldehyde)	Polyamide (Aromatic type)	Polyamide (Aromatic type)	Aluminum/polyester film on Asbestos fabric	Polyamide (more Aromatic groups then 143 & 144)	Poly Methyl Methacrylate	
NOI	Present or Intended Use	Drapery (FR)	Headliner, Baggage liner	Mattress ticking (FR)	Fabricated parts (FL)	Insulation	Flooring	Upholstery	Insulation, Baggage liner	Upholstery, Drapery	Window pan ea , Fabricated parts	
MATERIALS DESCRIPTION	Designation	Fabric (UC)	Fabric (C)	Fabric (DC)	Sheet (SR)	Foum (R)	Rug (UP)	Fabric (UC)	Fabric (C)	Fabric (UC)	Sheet (R)	
MATE	Color and Surface	Green Smooth	White Smooth	White/Blue Smooth	Cream Semi-clear Giosay	White Fine Grain	Green Loop	Green/ White/ Orange	S11ver Reflective	White	Clear Glossy	eviations
I I	Unit Weight oz/yd	5.8	6.6	12	28	12	45	11	18	6.6	210	t of abbre
TABLE	Thickness inch	.015	.007	.024	.031	1.0	• 30	.035	.031	.035	• 23	p. 3-1 for list of abbreviations
	Code	F-1	F-2	F = 1	s - 2	S - 3	R-1	F-1	F-2	F - I	s S	See p
	No.	138	139	140	17 17 17 3-1	142	143	144	145	146	147	
	Approximate Chemical Composition (Based on IR Spectroscopy)	Pile: Modacrylic (100%)	Modacrylic (100%)	Polyether Urethane	Plasticized PV C/PVA on aluminum sheet	Face (blue): PVC/PVA (89:11) Back (tan) : PVC/PMMA (90:10)	Modacrylic/Rayon/ Poly(vinylidene Chloride) 20%	Silicone Rubber	Polycarbonate	Poly(vinylidene fluoride) coating on Polyamide (aromatic type) fabric		
-----------------------	---	---	-------------------	--------------------	--	---	--	--------------------	----------------------------------	--	---	
	Present or Intended Use	Flooring	Blanket	Seat padding (FR)	Paneling	Pane ling	Casement drapery	Padding	Window panes Fabricated parts	Headliner		
MATERIALS DESCRIPTION	Designation	Rug (UP)	Fabric (UC)	Foam (F)	Laminate (R)	Laminate (SR)	Fabric (UC)	Sheet (F)	Sheet (R)	Fabric (C)		
MATE	Color and Surface	(A) Blue(B) Brown(C) GreenLoop	Cream Fluffy	White Open cell	Lt. Tan Matte	Lt. Blue Matte	White Open Weave	Red Closed cell	Clear Glossy	White Smooth		
	Unit Weight oz/yď	56	10	89	75	52	6.8	63	53	6.3	:	
TABLE I	Thickness inch	.25	.15	4.0	.054	.057	.033	.11	.060	.007		
	Code	R-1	F-1	S-1	L-3	L-2	F-1	S-1	S-3	F-2		
	No.	148	149	150	151	152	153	154	155	156		

See p. 3-1 for list of abbreviations

MATERIALS DESCRIPTION

TABLE T

	Approximate Chemical Composition (Based on IR Spectroscopy)	Modacrylic (100%)	PVC/ABS (94:6)	PVC/Acrylic (90:10)	Styrene/Polyester, fiberglass- reinforced (25%), TiO, pigment	PVC/Acrylic on Aluminum sheet	Asbestos/ Glass/ Polyamide (aromatic type)	PVC/PVA (95:5) on filled asbestos (71%)	ABS
ION	Present or Intended Use	Drapery	Panels, Fabricated parts	Panels, Fabricated parts	Panels, Fabricated parts	Panels, Interior finish	High-temperature insulation fabric	Panels, Interior finish	Fabricated parts
MATERIALS DESCRIPTION	Designation	Fabric (UC)	Sheet (SR)	Sheet (SR)	Sheet (R)	Laminate (R)	Fabric (UC)	Laminate (SR)	Sheet (R)
MAT	Color and Surface	White	Cream Glossy	011ve Glossy	White Glossy	Wood Grain pattern Smooth	White	Wood Grain pattern Smooth	White Glossy
I	Unit Weight oz/yď	10	29	34	65	57	13	39	60
TABLE I	Thickness	.035	.028	•034	.055	.032	.020	.031	.070
	Code	F-1	S-2	S-2	S - 3	L-3	F - 1	L - 2	S - 3
	No.	157	158	159	160	191 3-17	162	163	164

APPENDIX 4

OTHERS Colorimetric Tube ppm Measured with chloride ion electrode HCN ppm GAS CONCENTRATION 5 35 10 0 0 2 30 2 12 9 45 15 0 20 3 2 20 Maximum Indication, S 150 S S 80 S 150 0 300 25 0 30 0 ppm HC1 200 S S S S 0 150 200 40 0 60 300 0 Not reached 45 8 ppm 30 20 20 80 400 125 800 180 SUMMARY OF TEST RESULTS; SMOKE AND GAS CONCENTRATION 50 200 80 30 270 350 500 140 500 NR S Time to D = 16 s_t 1.2 0.7 0.9 1.4 1.5 1 ° 2 2 °0 1.2 min NR 0.5 15.0 1.0 0.3 0.3 0.8 1.8 0.5 NR Material not fully exposed because of melting, shrinking, etc. Tested in 5/8-inch thickness 19 35 24 140 -30 28 67 60 Maximum 7 Rate а Ш V OKE min 2 29 20 185 163 200 178 4 50 Σ Maximum Specific¹ Optical Density ഗ 60 50 272 418 89 9 375 276 191 AB 1472 60 204 439 380 16 193 96 N=Nonflaming EXPOSURE F=Flaming TEST HZ μ. N ы Z Ē N [**Z**4 N HZ A Z AN Z į۲. TABLE II SPECIMEN WEIGHT 40 2.2 1.8 2.8 2.6 4.4 5.0 12.2 7.0 9.1 60 SAMPLE NUMBER 2 ŝ 4 S 9 a.c.b.a. 2 œ 6

Probably acrylonitrile vapor indication Tested in 1-inch thickness

TABLE II

NOHN02: 30 NOHNO2:25 OTHERS Maximum Indication, Colorimetric Tube bpm œ б 0 2 GAS CONCENTRATION HCN ppm 0 2 20 9 50 10 10 0 0 ŝ 15 \sim 15 8 S S S 800 250 250 0 0 0 0 0 9 ppm HCI 1200 S S S 0 Ó 300 300 30 0 0 0 25 600 40 60 ppm 60 3 50 300 240 90 SUMMARY OF TEST RESULTS; SMOKE AND GAS CONCENTRATION 260 360 550 200 120 50 190 320 270 4.3 3.5 $D_{s_{t_{c}}}^{D}$ 3.0 6.5 3.8 0.5 Time to 2.1 2.0 2.1 min 0.6 0.7 1.0 0.6 0.6 1.4 1.6 2.2 1.2 9 œ 17 Maximum 4 6 4 9 40 59 7 Rate Run min SMOKE 340 280 120 61 96 9 23 50 170 Maximum Specific Optical Density 76 167 107 55 156 20 206 312 87 ۵^e > 660 >660 229 289 139 123 35 129 350 N=Nonflaming EXPOSURE F=Flaming TEST 54 N μZ HZ HZ N ۶щ ía. Z Ē. x Гщ X a z SPECIMEN 2.6 b WEIGHT 11.8 7.1 15.1 5.4 4.0 9.4 15.2 11.6 60 SAMPLE NUMBER 10 11 12 13 15 16 17 14 18

	1	ric Tube	OTHERS	mqq					NO+NQ: 50				
	NOI	Colorimetric	HCN	bpm	0	0	0	0	7	Ч	4	~	00
	ENTRAT				2	7	0	0	65	4	10	00	25
	GAS CONCENTRATION	In	HC1	шdd	0	100 80	200 100	70 30	0	1300 S 1000 S	0	0	50 20
I ON		Maximum	CO	mdd	45	20	30	10	30	60	80	130	50.
INTRAT					150	210	230	06	500	550	320	300	700
S CONCE		le to	t c	min	0.6	21.6	5°0	5.7	13.6	1.8	4.5	3.6	5°3
AND GA		Time	2 8 9		1.9	5.2	2.1	1.5	5.6	0.7	3.5	3.7	0.8
TEST RESULTS; SMOKE AND GAS CONCENTRATION	OKE	Maximum	R	min -1	13	2	17	4	e.	40	9	9	ŝ
ST RESI	SMO	0			10	14	26	4	11	160	6	4	260
6	:	mum Specific cal Densirv			77	22	82	24	105	167	77	43	126
SUMMARY		Maximum Optical	4		58	76	81	28	162	454	94	50	660
II	TE ST EXPOSURE	F=Flaming N=Nonflaming)		ΝĚ	NF	F N	F	F	ЧN	R	R	∧ N
TABLE]	SPECIMEN	WEIGHT		60	1.7	13.0	14.9	1.3	50. a	11.4	7.2	6.7	4.6
	SAMPLE	NUMBER			19	20	21	22	23	24	25	26	27

SMOKE AND GAS CONCENTRATION

to to 116 116 11.9 1.9 1.9 2.4 2.4 1.3 1.3 2.4 2.4 2.4 2.4 2.4 2.4	-		i i i Lini i i			-	-						L
CONCENTITANTION CAS CONCENT to Maximum Indication, 16 CO HCI c Maximum Indication, in PPm PPm 0.8 170 60 150 0.9 200 40 150 1.9 280 45 8 1.9 280 45 8 1.9 280 45 8 1.9 200 110 90 2.4 50 150 30 2.4 50 150 30 2.4 55 80 60 1.3 750 35 30 2.1 35 100 30 2.1 35 100 30										mdd	OTHERS	c Tube	
CONCENTITANTION CAS CONCENT to Maximum Indication, 16 CO HCI c Maximum Indication, in PPm PPm 0.8 170 60 150 0.9 200 40 150 1.9 280 45 8 1.9 280 45 8 1.9 280 45 8 1.9 200 110 90 2.4 50 150 30 2.4 50 150 30 2.4 55 80 60 1.3 750 35 30 2.1 35 100 30 2.1 35 100 30	0	12	Ч	Ŋ	0	-	1	40	50	E	2	netri	2
AS CONCENTRATION The to Maximum Indication, $f_{c}^{=}$ 16 CO Maximum Indication, min PPm PPm PPm min PPm PPm PPm 0.8 170 60 150 150 0.9 200 40 150 200 3.6 110 50 415 8 1.9 280 200 200 90 7.7 150 50 200 200 7.7 150 50 150 30 2.45 8 1.30 55 80 60 2.10 35 100 30 2.10 30 150 30 2.10 2.00 150 200 200 200 200 200 2.10 2.00 200 200 200 200 200 200 200 200 2		30	-	20	0	7	2	60	60	idd	HCI	olori	MIIO
CONCENTRATION to Maximum In 16 CO c Maximum In in PPm in PPm 0.8 60 150 0.9 200 40 150 1.9 280 40 45 1.9 7.5 50 200 2.4 110 50 115 2.4 150 50 155 2.4 180 55 8 1.3 750 35 200 2.1 750 35 10 2.1 750 35 10 2.1 750 35 10 2.1 750 35 10	s												CENTI
CONCENTRATION to Maximum In 16 CO c Maximum In in PPm in PPm 0.8 60 150 0.9 200 40 150 1.9 280 40 45 1.9 7.5 50 200 2.4 110 50 115 2.4 150 50 155 2.4 180 55 8 1.3 750 35 200 2.1 750 35 10 2.1 750 35 10 2.1 750 35 10 2.1 750 35 10	1000		60	30	200	06	αõ	200	150	шď	CI	catic	S CON
to to to to to to to to to to			80	150	200	110	45	150	150		H	1	GA
concentratil to 16 0.8 0.9 2.80 1.9 2.80 1.9 2.80 1.0 2.4 1.3 1.3 1.3 2.4 1.3 2.4 2.4 2.4	8	35	55	30	50	50	75	40	60	Шd	CO	Maxim	
	850	750	180	650	150	110	280	200	170	ц Д			
Time Time 0.5 0.5 0.6 0.4 0.6 0.6	2.6	2.1	1.3	2.4	7.7	3.6	1.9	6.0	0.8	nin	16 c	to	
	0.5	0.6	0.4	0.7	3.5	0.2	0*0	0.5	0 *4		D	Time	
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -	40	74	11	48	Ó	4	14	17	20	-1		Cm Cm	
23 23 23 23 23 23 21 11 14 23 20 21 21 21 21 21 21 21 21 21 21 21 21 21	240	200	16	190	15	21	11	23	23	min	Rate R	Maxim	OKE
S S M S S M S S M S S M S S S M S S S S											ity	ific	S M
2 6 6 4 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	390	277	68	207	58	68	45	52	48		Dens	Spec	5
SUMMARY Maximum Optical D D D D D 76 63 63 63 74 74 74 74 74 74 74 74	>660	977	74	458	74	72	63	66	76		Optical D	Maximum	TNEETING
80 E											gui		
I TEST EXPOSURE F=Flaming N=Nonflaming F N N F N N F N N N N N N N N N N N N	BA X	a n	H N	N H N	μN	чN	R F	ыX	F N		onflami	XPOSURE lamine	TEST
I -	65					an the second	•		_		N=N	ا بد	
TABLE II SPECIMEN F WEIGHT N WEIGHT N 8 1.6 1.6 1.6 1.6 1.8 1.8 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6	17.7	17.4	2.0	17.6	14.7	1.8	12.3	1.6	1.5	60	EIGHT	PECIMEN	TABLE
SAMPLE SE NUMBER WE 29 30 31 33 33 35 35	36	35	34	33	32	31	30	29	28				•

4-4

		Tube	OTHERS	mdd		. 1							
			OTH	dd				HF: 7 HF: 0					
	GAS CONCENTRATION	Colorimetric	HCN	bpm	50 5	0	20 6	0	20 5	13 14	18 15	20 12	40 6
	GAS CONC	Maximum Indication,	HCI	шdd	150 20	0	110 25	0	150 100	0	0	300 S 80 S	300 40
NOL		Maxim	co	шdd	40	30	60	20	45	130	160	180	150
CENTRAT					700	160	500	60	450	150	180	700	1000
AS CON		Time to	പ്പ	min	2.9	NR	2.3	NR	1.5	NR	NR	1.1	1.7
E AND C		L			0.7	1.6	0.6	NR	0.4	NR	NR	0.4	0.4
TEST RESULTS; SMOKE AND CAS CONCENTRATION	KE	Maximum Rate	R	nin -1	37	5	26	< 1	38	< 1	1 V	120	65
ST RESU	S M O I			ц	220	16	190	- - 	170	5	\sim 1	230	260
OF	9	um Specific al Density	QE		156	12	146		181	00	4	240	276
SUMMARY		Maximum Optical			641	50	460	4	448	10	80	466	>660
	TEST EXPOSURE	F=Flaming N=Nonflaming			μN	R F	μ.N.	R	NF	NF	F N	F N	NF
TABLE II	SPECIMEN	WEIGHT		60	18.2	10.7	12.2	0.2	15.3	4.8 c	21.3 c	10.3	12.2
L	SAMPLE	NUMBER			37	38	39	. 40	41	42	43	77	45

	ric Tube	OTHERS	mqq									
T I ON	Colorimetric	HCN	mdd	0	0	15	2	ŝ	30	2	5	
ENTRA				1	1	40	15	30	38	с Г	10	
GAS CONCENTRATION	Indication,	HCI	mqq	S 006 S	0	250	S 1200 S	0	400	0	œ	
	In			1300	0	300	1600	150	400	0	15	
	Maximum	CO	шdd	350	80	400	250	200	400	250	06	
				700	150	1200	1200	700	1100	250	230	
	me	2 5 1 2 1 2	min	2.0	NR	1.4	1.4	0.4	0.6	0.5	0.6	
1 3 4 -	Tú	2		0.8	NR	0 • 5	0.7	0.2	0.2	2.5	0.2	
SMOKE	Maximum	R	-1-	35	< 1	130	100	59	50	46	34	
M 0 K		4	min	120	1	180	220	110	250	8	23	
S	um Specific al Densirv	-		172	00	280	414	164	302	318	87	
	Maxímum Optical			303	80	>660	518	229	>660	30	60	
TEST EXPOSURE	F=Flaming N=Nonflaming	D	,	F N	R	н N	R	F N	F N	R R	N F	
SPECTMEN	WEIGHT		60	12.2	0.7	16.9	21.2	6.2 a	17.0	4.6 c	5.9	
SAMPLE	NUMBER		Ţ	46	47	48	49	50	51	52	53	

		tric Tube	OTHERS	шdd									
	GAS CONCENTRATION	Colorimetric	HCN	шdd	2 1	3 1	1	10	0	5	8	5	40
	NCENT				• • • • • • • •			15	Ŭ	15 S	25 S	s 20	45
	AS CON	Indication,	HCI	mqq	35	ŝ	12	25	400	800	850	450	100
	C)				50	6	40	40	600	1500 S	1400 S	700 S	150
NOI		Maximum	CO	шdd	80	50	60	20	100	150	130	320	80
CENTRAT					160	120	100	80	250	1100	1000	800	280
AS CON	ç.	ne to		min	3.1	7.8	3 ° 6	1.0	1.8	1.2	1.4	1.6	0.7
SMOKE AND GAS CONCENTRATION		Time	ຊິ		2.9	5.2	1.3	1.0	0.4	0.5	0.5	0*5	0.5
RESULTS; SMOK	KE	Maximum Rate	R. B.	min -1	Ŋ	С	4	35	œ	47	77	33	22
	S M 0				9	3	2	22	64	260	250	180	20
RY OF TEST		um Specific al Densitv		ray, in the present states	35	40	07	89	28	290	267	216	78
SUMMA RY		Maximum Optical			30	18	27	58	115	609	600	436	60
	ST SURE	ing laming	þ		H N	H N	N	H N					
II	TEST EXPOSURE	F=Flaming N=Nonflaming				μų	H 4	щд	ΥY	NF	AN	μN	μ X
TABLE II	SPECTMEN	WEIGHT		60	6*0	0.6	1.0	2.6	3.0	12.8	12.7	13.2	2.0
	SAMPLE				55	56	57	58	59	60	61	62	63

SUMMARY OF TEST RESULTS; SMOKE AND GAS CONCENTRATION

OTHERS Maximum Indication, Colorimetric Tube ppm Ъ Ъ 110 55 0 0 0 mdd -HCN GAS CONCENTRATION 25 0 0 0 C 17 17 ppm 200 300 350 400 450 00 HCI 500 0 0 800 S 1100 S 800 S 800 S S 700 450 30 20 0 8 ppm 130 160 170 500 200 190 150 280 30 300 420 450 450 1200 380 230 500 500 Time to D = 16 t_c 1.3 2.0 1.4 4.2 1.2 1.2 1.0 1.6 2.4 min 0.6 0.7 0°4 0.6 0.4 0.4 0.4 0.6 0.4 min -1 45 25 19 33 Maximum 92 86 44 9 26 R n Rate ы 0 K 140310 160 200 250 230 260 180 28 Σ Maximum Specific Optical Density ഗ 178 286 246 178 327 **1**80 60 104254 ٩ 295 199 295 >660 300 355 69 311 234 N=Nonflaming EXPOSURE F=Flaming TEST μZ μZ ъz E Z ЪZ ЧZ HN μZ HZ TABLE II SPECIMEN 5.0 5.5 6.0 14.1 WEIGHT 8.3 4.7 6.7 5.3 12.1 60 SAMPLE NUMBER 69 70 71 72 64 66 68 65 67 L

		ic Tube	OTHERS	ngq								
	NTRATION	Colorimetric Tube	HCN	шdd	40 20	0	5 5	7 3		0	1 1	2 0
	GAS CONCENTRATION	Maximum Indication,	HC1	шdd	400 200	0	o 0	80 5		100 8	0 0	0 0
CENTRATION		Maxim	CO	mdd	1300 200	140	180 120	220 100		2200 400	70 10	95 10
AND GAS CONC		Time to	c c c	min	0.6 2.0	0.6	0.9 1.2	1.2 1.4	4	1.9 6.0	NR NR	NR NR
TEST RESULTS; SMOKE AND GAS CONCENTRATION	MOKE	Maximum Rate	R	min -1	180 58	'n	13 29	35 70		120 12	1 0	1 < 1
SUMMARY OF TEST I	S	Maximum Specific Optical Density	D E		442	328	175	200		203	0	2
SUM					574		39	151		383	10	00
II	TEST EXPOSURE	F=Flaming N=Nonflaming)		Ν	Ν	H N	e v		R	μu	j24 10
TABLE II	SPECIMEN	WEIGHT		60	20.8	86.9	3°6	16.0		32.9	6.0	1.0
	SAMPLE				73	74	75	76		100	101	102

1				
i	Ū	ō		

		cic Tube	OTHERS	шdd									in tore
	GAS CONCENTRATION	, Colorimetric	HCN	ррт	2 1	5 4	1 0	0	35 30	30	1 0	20 10	19 8
	GAS CONCI	num Indication,	HC1	ррт	1600 S 1300 S	15 12	35 13	0	120 100	110 100	0	1000 S 700	600 S 600 S
I ON		Maximum	CO	шdd	110	70	75	50	06	60	120	280	180
ENTRAT					330	130	110	400	160	220	270	1000	1100
AS CONC	an fan - fan e		t c	min	6.8	3.0	NR	NR	0.8	0.6	18.2	2.3	1.8
AND G/		Time	с с		1.5	2 • 8	NR	2.8	0.4	0.6	6.0	0.6	0.5
OF TEST RESULTS; SMOKE AND GAS CONCENTRATION	KE	Maximum	R	min -1	6 2	4 5	2 [.] 1	1	10	13	2	68	42
ST RES	S M 0		2			7		70	15	11	66	220	310
		num Specific			20	25	10	12	41	41	168	498	248
SUMMAF		Maximum Ontical) 7 1		30	25	11	210	39	39	183	>660	566
11	TEST EXPOSURE	F=Flaming N=Nonflaming	0		Ч	R F	R F	R	μZ	Ъ	ЪN	R F	Γ F
TABLE II	SPECTMEN			60	5.7	9 °4	5.2	18.4	1.2	1.2	12.4	23.2	11.0
	SAMPLE	NUMBER			103	104	105.	106	107	108	109	110	111

		ric Tube	OTHERS	шdd	S0 ₂ :150 S0 ₂ :0			HF: 0 HF: 0			HF:11 HF: 0		
	ION	Colorimetric	HCN	mdd	0	0	0	0	0	5	0	0	0
	TRAT	Coloi		L-la	0	0	0	0	0	2	Ч	0	0
	GAS CONCENTRATION	Indication,	HCI	ndd	0	0	25 17	0	0	2000 S 1100 S	0	0 1	11 10
		Maximum		-						20			-
NO		Maxi	S	mdd	30	Ŷ	20	Ń	15	750	N V	10	10
NTRATI					220	60	70	60	70	650	280	80	06
CONCE		e to	b = 16 st c	mín	NR	NR	NR	NR	NR	1.6	NR	NR	NR
SMOKE AND GAS CONCENTRATION		Time	D	E	2.6	NR	NR	NR	NR	0.6	NR	NR	NR
DKE A													· · · · · · · · · · · ·
	ы	Maximum	kate R		1 <	1 V	2	0	-1 V	25	0	1 V	1
RESULTS;	MOK		R R m	min	12	1 V	e	0	1	100	1 V	1 V	1 V
TEST	ŝ	Specific	n	-									
XY OF					4	4	11	0	ŝ	173	0	2	П
SUMMARY		Maximum	D		40	4	6	0	9	321	15	Г	1
II	TEST EXPOSURE	F=Flaming	N=NONIJAMING		NF	Ъ	ч И Е	ЪИ	R F	ЯИ	R F	R F	R F
TABLE II	CDECTNEM	NELLIUT II	мртент	60	11.2	1.9	1.6	0.5	2.3	9 • 5	1.1	1.0	3.0
	CANDIT		NUMBER		112A	113	114	115	116	117	118 D	119	120

EH	
RA	
ΕN	F
CE	
S	
0	
GAS	
AND	
rn	the second s
	l
Ĕ	l
5	
~ .	1
5	And a state of the
E.a.d	
TES1	

		ric Tube	OTHERS	mdd			SO2: 45 H2S: 40	S02:40					
	NTRATION	Colorimetric	HCN	шdd	5 1	1	80	9	0	0	0	2 1	25 2
	GAS CONCENTRATION	mum Indication,	HC1	шdd	15 13	2500 S 2000 S	1100	1500 S	700 300	0	0	700 S 1000 S	150 25
NTRATION		Maximum	CO	шdd	170 100	800 700	1000	500	150 20	60 10	60 10	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
GAS			$D_s = 16$ t_c	min	NR NR	1.1 3.2	0.2	0.3	3.9 3.9	NR NR	NR NR		0.2 0.7
SMOKE	OKE	Maximum	Rate R m	min -1	< 1 < 1	30 13	290	120	8	< 1 < 1 < 1	< 1 < 1 < 1		120 62
OF TEST	S M		Optical Density D		2	. 66		508	34		. 1		286
SUN					14	125	> 660	- -	26	5		309	262
I	TE ST EXPOSURE	F=Flaming	r=r laming N=Nonflaming		ыN	F N	н	Ν	ЪN	F N	A N	ЯN	Fr Z
TABLE II		SPECIMEN	WEIGHT	60	12.2	23.0	20.0 c		1.9	6.0	6*0	5.5	
		SAMPLE	NUMBER		121	122	123		124	125	126	127	128 A

		ł	1.0		· · · ·						s		
		Colorimetric Tube	OTHERS	bpm		HF: 80	802150 80 ₂ 140						
	NOIL	orime	HCN	mdd	2	0	0	5	37	0	0	1	г
	CENTRA	A			2	2	Q	ŝ	46	-	0	-4	ŝ
Ŧ	GAS CONCENTRATION	Maximum Indication,	HC1	mdd	2 2	0	400 S 200 S	200 200 S	150 S 100 S	800 S 900 S	600 S 350 S	\$ 00% \$ 009	900 S 500 S
TTON	10.77	Max	CO	ррт	190	20	60	100	06	80	70	70	250
CENTRA					150	480	750	550	210	500	470	200	800
AS CON		ae			0.7	2.5	1.1	1.6	0.6	1.3	1.5	1.0	1.2
CE AND		T			0.6	1.2	0.8	0.7	0.4	0.4	0.4	0.4	0.6
S; SMO	ы	Maximum Rate	R _{II}	n -1	54	28	70	42	28	57	29	30	47
TEST RESULTS; SMOKE AND GAS CONCENTRATION	SMOK	- U	2	mín	15	640	92	130	25	300	340	83	160
SUMMARY OF TEST		Maximum Specific Optical Density	. 8		41 . 300	109 75	230 196	233 161	67 62	503 218	368 150	170 94	342 169
		gu				F	2	5		2	õ	1	ň
11	EXPOSURE	F=Flaming N=Nonflaming			N	μN	AL N	μN	Γ	NF	N	A N	ы N
TABLE II	SPECIMEN	WEIGHT		60	3•5 c	20.1	16.7	18.8	1.8	7.5	5.6	5.3	18.3
	SAMPLE	NUMBER			128 B	129	130	131	132	133	134	135	136

No.

	• • • • • • • •	Τ.	1					00					· · · · · · · · · · · · · · · · · · ·
		Colorimetric Tube	OTHERS	шdd			HF: 26 HF: 10	NO+NO ²	3	NUH3: 60	NOHNO2 [*] 12		NOHNO ₂ :8
	NOI	rime	HCN	mdd	-	2	0	5	0	40	0	0	5
	ENTRAT				10	4	0	8	0	48	ŝ		5.
	GAS CONCENTRATION	Indication,	HCI	mďď	s 800 S	0	0	14	0	0	0	15	0
		1			1700	0	0	17	0	0	0	25	0
ION		Maximum	CO	mdd	120	40	2 V	210	5	880	20	20	10
INTRAT		د کوری			620	100	45	270	180 <	700	130	80	140
S CONCI	-		Lo To	nim	1.7	NR	NR	6.0	NR	4.8	3.4	NR	NR
TEST RESULTS; SMOKE AND GAS CONCENTRATION		Time	<u>а</u> ⁶ -		0.5	NR	NR	0 . 8	5.9	3.2	2.4	NR	NR
; SMOK		Maximum Rate R _m min -1			41	r V	 V	14	1 <	7	Ø	2	1 7
ESULTS	MOKE				140	2	r⊣ V	16	4	10	Ø	7	< 1 >
TEST F	S	Specific	Specific				1 - 						
OF		C		154	9	· ,	51	-	65	30	14	9	
SUMMARY		Maximum	С Т Т Т Т Т Т Т Т Т Т Т Т Т Т Т Т Т Т Т		044	10	H	50	28	51	32	11	00
	20 20 20												
II	TEST EXPOSURE F=Flaming N=Nonflaming		21-21 CALA 2 CAL		ЧИ	Ν	N F	F N	F N	R	ы N	ыN	μZ
TABLE I	SPECTMEN			06	14.8	1.0	1.5	2.4	5.4	8°6	2.4	3.6	2.3
	SAMPLE				137	138	139	140	141	143	144	145	146

SUMMARY OF TEST RESULTS; SMOKE AND GAS CONCENTRATION

TABLE II

	Colorimetric Tube	OTHERS	ррш					NOHNO ₂ :12				• · · · · · · · · · · · · · · · · · · ·
NOIL	orime	HCN	ррт	0	90	90	60	2	0		20	0
CENTRA				5	70	90	50	12	-	-	15	0
GAS CONCENTRATION	mum Indication,	HC1	mqq	120 20	1000 S 300 S	1000 S 250 S	300 S 200 S	40 0	900 S 500 S	1200 S 300 S	150 90	0
NON A	Maximum	CO	mqq	200	120	100	50	40	40	180	80	10
				2000	400	500	80	270	350	500	80	60
	8	د د	min	4.5	1.5	1.5	1.2	0.4	2.9	1.7	1.1	2.8
	ίΓ	-		1.4	0.5	0.5	1.2	0.4	0.9	0*0	1.1	0.9
Е	Maximum Rate	R. B	min -1	15	66	150	30	42	45	20	10	10
0 W			E	88	130	190	20	43	91	76	9	50
S	Maximum Specific Optical Density			, 304	314	324	66	205	148	88	25	77
	Maxi Opti			>660	410	46 4	50	101	202	223	19	151
TEST	F=Flaming N=Nonflaming			ΡA	μN	NF	μN	μZ	ы N	F N	Ρ	Έų Z
SPECIMEN	WE IGHT		60	42.4	11.4	11.5	2.3	4.8 a	15.2	10.5	1.5	12.5
SAMPLE	NUMBER			147	148 A	148 C	149	150	151	152	153	154

	-	ric Tube	OTHERS	шdd		HF:35 HF:24							
	NOITA	Colorimetric	HCN	mdd		0	20	1	0	0	0	0	0
	CONCENTRATION					0	25	2	0	0	0	0	0
	GAS CON	Indication,	HCI	mdd		0	80	S 150 S	S 100 S	150	70	80	0
						0	200	150	200	200	130	150	0
NOI		Maximum	co	шdd		40	20	35	50	125	25	25	2° 2
ENTRAT						100	130	300	240	500	110	120	30
5; SMOKE AND GAS CONCENTRATION		E	r_{c}	min		NR	4.6	1.2	1.5	°. °	4.4	1.0	NR
		E	-			NR	0.6	0.5	0.7	0.7	2.0	0.3	NR
	Ы	Maximum	Rate R ^m min -1			1	4	25	20	18	ø	11	0
RESULTS;	МОК		22	min		< 1	130	170	74	70	18	20	- - -
RY OF TEST	ß	imum Specific	D D M			2	18	59	63	106	24	29	0
SUMMARY		Maxim	0 7 1 1			б	06	195	154	190	43	52	Ч
II	TEST EXPOSURE	F=Flaming N=Nonflaming		μZ	μZ	ЪZ	Ы N	ЫN	μN	F N	F N	R	
TABLE :	CDF CT MEN	WETCHT		60		1.3	2.0 a	5.1	6.7	13.1	11.5	1.5	2.5
	SAMPLE	NIIMBER		, 	155	156	157	158	159	160	161	161 x	162