Piquasail brifinill hailtuat lest
 For the Evaluation of Aircraft Duct Material

INTERNATIONAL AIRCRAFT MATERIALS FIRE TEST WORKING GROUP ATLANTIC CITY, NEW JERSEY MARCH 20-21, 2006 MEETING
WJH FAA Technical Center
John W. Reinhardt
Fire Safety Section, AAR-440 Atlantic City Int'I Airport, New Jersey 08405

Outline

PRESENTATION OUTLINE:

- Task Group Objective
- October 2005 Meeting Minutes
- Test Results (Past Quarter)
- Status of Proposed Aircraft Ducting Test
- Summary \& Final Remarks

Outline

PRESENTATION OUTLINE:

- Task Group Objective
- October 2005 Meeting Minutes
- Test Results (Past Quarter)
- Status of Proposed Aircraft Ducting Test
- Summary \& Final Remarks

Objectives

OBJECTIVES

- FAA's goal is to raise the standard for the airplane such that fires in inaccessible areas do not spread and create catastrophic conditions.
- The current test for aircraft ducts does not predict the behavior of the part in actual conditions and therefore suggests the need for a new standard.

- For the Task Group, is to develop a new fire test procedure to evaluate the fire-worthiness of aircraft ducting.

Outline

PRESENTATION OUTLINE:

- Task Group Objective
- October 2005 Meeting Minutes
- Test Results (Past Quarter)
- Status of Proposed Aircraft Ducting Test
- Summary \& Final Remarks

Minutes

OCTOBER 2005 TASK GROUP
 MEETING MINUTES

- FAA test data available on-line (ftp://155.178.136.36)
- Task Group Members comments, concerns \& questions:
- Define ducting system boundaries \& exclusions

- Should insulated covered ducts be regulated under FAR 856 or should it be regulated by the test new protocol?

Minutes

OCTOBER 2005 TASK GROUP MEETING MINUTES

- Task Group Members concerns \& questions (Cont.):
- Should ducts that transition between the cabin and inaccessible areas be regulated by current cabin federal regulations or the new test protocol?
- Should the repair/replacement of existing parts meet the previous regulation test or the new test protocol?
- When the duct is an integrated part of the structure, should it meet the new test protocol or the old one?
- The task group members were assigned to review the test result data to assess the proposed radiant heat panel test.
- Samples of less fire-worthy materials, with fire retardant coatings, to be provided to the FAA Technical Center for evaluation.

Outline

PRESENTATION OUTLINE:

- Task Group Objective
- October 2005 Meeting Minutes
- Test Results (Past Quarter)
- Status of Proposed Aircraft Ducting Test
- Summary \& Final Remarks

Results

LAST QUARTER TEST RESULTS

- Tested Taped N (IST and RP)
- Tested Coated Taped N (IST and RP)
- Tested Coated B (RP)
- Received Structural Adhesive (Scheduled for testing)

Results

LAST QUARTER TEST RESULTS

- Intermediate-Scale Test Results:
- Taped N
- Peak Temp $(\operatorname{degC})=415$
- Heat Flux $\left(\mathrm{kW} / \mathrm{m}^{2}\right)=61$
- Burning Time (min) $=10$
- Burned Area (cm^{2}) $=111$

Results

LAST QUARTER TEST RESULTS (CONT.)

- Intermediate-Scale Test Results (Cont.):
- Coated/Taped N Test 1
- Peak Temp $($ degC $)=766$
- Heat Flux $\left(\mathrm{kW} / \mathrm{m}^{2}\right)=59$
- Burning Time $(\min)=+40$
- Burned Area $\left(\mathrm{cm}^{2}\right)=4985$

Results

LAST QUARTER TEST RESULTS (CONT.)

- Intermediate-Scale Test Results (Cont.):
- Coated/Taped N Test 2
- Peak Temp $($ degC $)=698$
- Heat Flux $\left(\mathrm{kW} / \mathrm{m}^{2}\right)=39$
- Burning Time (min) $=2.18$
- Burned Area $\left(\mathrm{cm}^{2}\right)=336$

INTERMEDIATE-SCALE FIRE TEST
Aircraft Ducting Materials / Narrow-Body Configuration

Material

INTERMEDIATE-SCALE FIRE TEST
Aircraft Ducting Materials / Narrow-Body Configuration

Material

INTERMEDIATE-SCALE TEST

Aircraft Ducting Materials

INTERMEDIATE-SCALE FIRE TEST
Aircraft Ducting Materials / Narrow-Body Configuration

Results

LAST QUARTER TEST RESULTS (CONT.)

- Radiant Panel Test Results:
- Material Taped N :
-FAA Radiant Panel Test Results
* Burn Length (cm) $=0.67$
* After Flame Time (sec) = +40
- Proposed Radiant Panel Test Results
* Burn Length (cm) $=1.5$

* After Flame Time (sec) $=4.4$

Results

LAST QUARTER TEST RESULTS (CONT.)

- Radiant Panel Test Results:
- Material Coated Taped N:
-FAA Radiant Panel Test Results
* Burn Length (cm) $=3.2$
* After Flame Time (sec) $=7.3$
- Proposed Radiant Panel Test Results
* Burn Length (cm) $=9.7$
* After Flame Time (sec) $=+40$

Matches Performance of IST Test 1!

Results

LAST QUARTER TEST RESULTS (CONT.)

- Radiant Panel Test Results:
- Material Coated B:
-FAA Radiant Panel Test Results
* Burn Length (cm) = 3.6
* After Flame Time (sec) $=3.6$
- Proposed Radiant Panel Test Results
* Burn Length (cm) = 10.1
* After Flame Time (sec) $=+40$

EXPERIMENTAL RADIANT PANEL TEST RESULTS Aircraft Ducting Materials

Material

EXPERIMENTAL RADIANT PANEL TEST RESULTS
Aircraft Ducting Materials

Material

Outline

PRESENTATION OUTLINE:

- Task Group Objective
- October 2005 Meeting Minutes
- Test Results (Past Quarter)
- Status of Proposed Aircraft Ducting Test
- Summary \& Final Remarks

$\underset{\text { Status of Tes }}{\text { prooosep paomantrpanet test }}$

Test Protocol: Based on Appendix F to Part 25 (Part IV) - Test Method To Determine the Flammability and Flame Propagation Characteristics of Thermal/Acoustic Insulation Materials

Sample Size: 215.9mm x 279.4mm
Heat Source: Propane Flame \& Radiant Heating Coils ($147 \mathrm{~kW} / \mathrm{m}^{2}$ pilot , $17 \mathrm{~kW} / \mathrm{m}^{2}$ panel).

Heat Source Exposure: One minute exposure to radiant heat, then 10 seconds pilot impingement.
Max Flame Propagation: < 5.08 cm
Max Flame Time: TBD

RADIANT PANEL TEST RESULTS

Aircraft Ducting Materials

EXPERIMENTAL RADIANT PANEL TEST RESULTS

Aircraft Ducting Materials

Status of Test

PROPOSED AIRCRAFT DUCTING
TEST (CONT.):

- Some components or parts of the ducting system are installed between the hidden areas (such as the attic and cargo compartment) and the cabin area.
- Suggestion: Use the performance of materials that passed the OSU to determine the maximum "After Flame Time".

FAA FIRE TESTS

FAA CABIN TESTS:

(1) $12 \& 60 \mathrm{sec}$ Vertical BB
(2) 15 sec Horizontal BB
(3) Seat Cushion Fire Blocking (Oil Burner)
(4) OSU Heat Release \& Smoke 65/65/200
(5) Thermal Acoustic Insulation: Radiant Panel \& Burn Through Tests
(6) Electrical: 60 deg Test

EXPERIMENTAL RADIANT PANEL TEST RESULTS

 Aircraft Ducting MaterialsSuggested Maximum After Flame Time $=45 \mathrm{sec}$

Status of Test

PROPOSED AIRCRAFT DUCTING TEST:

Topics for Discussion with Task Group Members
(1) "After Flame Time" recommended to be 45 seconds
(2) Should we change the pilot flame impingement time back to 15 seconds?

Outline

PRESENTATION OUTLINE:

- Task Group Objective
- October 2005 Meeting Minutes
- Test Results (Past Quarter)
- Status of Proposed Aircraft Ducting Test
- Summary \& Final Remarks

Summary

SUMMARY \& FINAL REMARKS

- OCTOBER MINUTES: Task Group member's policy questions cannot be answered at this time, but they will be included in the report for future reference.
- LAST QUARTER TESTING: There was a significant improvement (+10x) on the performance of material N during IST and RP tests when a fire retardant tape was applied to it. The same could not be said about the FR coating (Taped N or B).
- PROPOSED TEST: Obtain Task Group members' feedback
- "After Flame Time" recommended: 45 seconds (based on test data)
- Extend pilot impingement time (from 10 sec to 15 sec)
- Continue testing materials (as needed)
- Initiate test protocol draft report

INTERMEDIATE-SCALE TEST
Aircraft Ducting Materials

SAMPLE "C"

$\mathrm{T}_{\mathrm{i}}=486^{\circ} \mathrm{C}$
IST Burning Time = $\mathbf{1 . 1 8}$ minutes
IST Burned Area $=1190 \mathrm{~cm}^{2}$
IST Peak Temperature $=641{ }^{\circ} \mathrm{C}$
RP Burned Length $=16 \mathrm{~cm}$
RP After Flame $=>40$ sec
OSU Peak Heat Released $=66.3 \mathrm{~kW} / \mathrm{m}^{2}$
OSU Total Heat Released $=\mathbf{2 9 . 6}$ kW/m²
Smoke Density $=4.5$
SAMPLE "D"

SAMPLE "F"


```
T
IST Burning Time = 1.13 minutes
IST Burned Area = 750 cm
IST Peak Temperature = 896 %
RP Burned Length = 16 cm
RP After Flame = >40 sec
OSU Peak Heat Released = 70.5 kW/m}\mp@subsup{}{}{2
OSU Total Heat Released = 72.9 kW/m}\mp@subsup{}{}{2
Smoke Density = 189
```


$\mathrm{T}_{\mathrm{i}}=358{ }^{\circ} \mathrm{C}$
IST Burning Time $=30$ minutes
IST Burned Area $=1752 \mathrm{~cm}^{2}$
IST Peak Temperature $=708{ }^{\circ} \mathrm{C}$
RP Burned Length $=16 \mathrm{~cm}$
RP After Flame $=>40 \mathrm{sec}$
OSU Peak Heat Released $=179.3 \mathrm{~kW} / \mathrm{m}^{2}$
OSU Total Heat Released $=\mathbf{1 1 4 . 2} \mathrm{kW} / \mathrm{m}^{2}$
Smoke Density = 175.8

SAMPLE "N"

$\mathrm{T}_{\mathrm{i}}=615^{\circ} \mathrm{C}$
IST Burning Time $=1.28$ minutes
IST Burned Area $=347 \mathrm{~cm}^{2}$
IST Peak Temperature $=797^{\circ} \mathrm{C}$
RP Burned Length $=4.2 \mathrm{~cm}$
RP After Flame $=2.8 \mathbf{~ s e c}$
OSU Peak Heat Released $=44.2 \mathrm{~kW} / \mathrm{m}^{2}$
OSU Total Heat Released $=39.8 \mathrm{~kW} / \mathrm{m}^{2}$
Smoke Density $=0.7$

SAMPLE "P"

SAMPLE "M"
$\mathrm{T}_{\mathrm{i}}=581^{\circ} \mathrm{C}$
IST Burning Time $=1.21$ minutes
IST Burned Area $=653 \mathrm{~cm}^{2}$
IST Peak Temperature $=777^{\circ} \mathrm{C}$
RP Burned Length $=3.8 \mathrm{~cm}$
RP After Flame $=36.8 \mathrm{sec}$
OSU Peak Heat Released $=33.5 \mathrm{~kW} / \mathrm{m}^{2}$ OSU Total Heat Released $=\mathbf{2 4 . 4} \mathbf{~ k W} / \mathrm{m}^{2}$ Smoke Density = 8.6

SAMPLE "T"

$\mathrm{T}_{\mathrm{i}}=\mathrm{N} / \mathrm{A}$
IST Burning Time $=\sim 10$ minutes
IST Burned Area $=111 \mathrm{~cm}^{2}$
IST Peak Temperature $=415{ }^{\circ} \mathrm{C}$
RP Burned Length $=1.5 \mathrm{~cm}$
RP After Flame $=4.4 \mathrm{sec}$
OSU Peak Heat Released = N/A
OSU Total Heat Released = N/A
Smoke Density = N/A

WJH FAA Technical Center
TEST 011205T2 Taped N

SAMPLE "U \& U2"

SAMPLE "V"

SAMPLE "X"

SAMPLE "Y"

$\mathrm{T}_{\mathrm{i}}=623^{\circ} \mathrm{C}$
IST Burning Time = 1.19 minutes
IST Burned Area = Film shrunk, Min to Duct
IST Peak Temperature $=834{ }^{\circ} \mathrm{C}$
RP Burned Length $=2.8 \mathrm{~cm}$
RP After Flame = 35 sec
OSU Peak Heat Released $=34.6 \mathrm{~kW} / \mathrm{m}^{2}$
OSU Total Heat Released $=43.6 \mathrm{~kW} / \mathrm{m}^{2}$
Smoke Density = 17.7
SAMPLE "Z"

