Proposed Radiant Heat Panel Test
For the Evaluation of Aircraft Duct Material
PRESENTATION OUTLINE:

- Task Group Objective
- October 2005 Meeting Minutes
- Test Results (Past Quarter)
- Status of Proposed Aircraft Ducting Test
- Summary & Final Remarks
PRESENTATION OUTLINE:

- Task Group Objective
- October 2005 Meeting Minutes
- Test Results (Past Quarter)
- Status of Proposed Aircraft Ducting Test
- Summary & Final Remarks
OBJECTIVES

- FAA's goal is to raise the standard for the airplane such that fires in inaccessible areas do not spread and create catastrophic conditions.
- The current test for aircraft ducts does not predict the behavior of the part in actual conditions and therefore suggests the need for a new standard.
- For the Task Group, is to develop a new fire test procedure to evaluate the fire-worthiness of aircraft ducting.
PRESENTATION OUTLINE:

- Task Group Objective
- October 2005 Meeting Minutes
- Test Results (Past Quarter)
- Status of Proposed Aircraft Ducting Test
- Summary & Final Remarks
OCTOBER 2005 TASK GROUP
MEETING MINUTES

- FAA test data available on-line (ftp://155.178.136.36)

- Task Group Members comments, concerns & questions:
 - Define ducting system boundaries & exclusions
 - Should insulated covered ducts be regulated under FAR 856 or should it be regulated by the test new protocol?
OCTOBER 2005 TASK GROUP MEETING MINUTES

- Task Group Members concerns & questions (Cont.):

 - Should ducts that transition between the cabin and inaccessible areas be regulated by current cabin federal regulations or the new test protocol?

 - Should the repair/replacement of existing parts meet the previous regulation test or the new test protocol?

 - When the duct is an integrated part of the structure, should it meet the new test protocol or the old one?

 - The task group members were assigned to review the test result data to assess the proposed radiant heat panel test.

 - Samples of less fire-worthy materials, with fire retardant coatings, to be provided to the FAA Technical Center for evaluation.
PRESENTATION OUTLINE:

- Task Group Objective
- October 2005 Meeting Minutes
- Test Results (Past Quarter)
- Status of Proposed Aircraft Ducting Test
- Summary & Final Remarks
LAST QUARTER TEST RESULTS

- Tested Taped N (IST and RP)
- Tested Coated Taped N (IST and RP)
- Tested Coated B (RP)
- Received Structural Adhesive (Scheduled for testing)
LAST QUARTER TEST RESULTS

- Intermediate-Scale Test Results:
 - Taped N
 - Peak Temp (degC) = 415
 - Heat Flux (kW/m²) = 61
 - Burning Time (min) = 10
 - Burned Area (cm²) = 111
LAST QUARTER TEST RESULTS (CONT.)

- Intermediate-Scale Test Results (Cont.):
 - **Coated/Taped N Test 1**
 - Peak Temp (degC) = 766
 - Heat Flux (kW/m²) = 59
 - Burning Time (min) = +40
 - Burned Area (cm²) = 4985
LAST QUARTER TEST RESULTS (CONT.)

- Intermediate-Scale Test Results (Cont.):
 - Coated/Taped N Test 2
 - Peak Temp (degC) = 698
 - Heat Flux (kW/m²) = 39
 - Burning Time (min) = 2.18
 - Burned Area (cm²) = 336
INTERMEDIATE-Scale FIRE TEST
Aircraft Ducting Materials / Narrow-Body Configuration

Heat Flux (kW/m²)

Material

Coated
Taped
N Test
2

Coated
Taped
N Test
1

Taped
N

Material
SAMPLE “TAPED N”
LAST QUARTER TEST RESULTS (CONT.)

- Radiant Panel Test Results:
 - Material Taped N:
 - FAA Radiant Panel Test Results
 - Burn Length (cm) = 0.67
 - After Flame Time (sec) = +40
 - Proposed Radiant Panel Test Results
 - Burn Length (cm) = 1.5
 - After Flame Time (sec) = 4.4
LAST QUARTER TEST RESULTS (CONT.)

- Radiant Panel Test Results:
 - Material Coated Taped N:
 - FAA Radiant Panel Test Results
 - Burn Length (cm) = 3.2
 - After Flame Time (sec) = 7.3
 - Proposed Radiant Panel Test Results
 - Burn Length (cm) = 9.7
 - After Flame Time (sec) = +40

Matches Performance of IST Test 1!
LAST QUARTER TEST RESULTS (CONT.)

- Radiant Panel Test Results:
 - Material Coated B:
 - FAA Radiant Panel Test Results
 - Burn Length (cm) = 3.6
 - After Flame Time (sec) = 3.6
 - Proposed Radiant Panel Test Results
 - Burn Length (cm) = 10.1
 - After Flame Time (sec) = +40
EXPERIMENTAL RADIANT PANEL TEST RESULTS
Aircraft Ducting Materials

FAA Requirement: Length < 5.08 cm
PRESENTATION OUTLINE:

- Task Group Objective
- October 2005 Meeting Minutes
- Test Results (Past Quarter)
- Status of Proposed Aircraft Ducting Test
- Summary & Final Remarks
PROPOSED RADIANT PANEL TEST:

Test Protocol: Based on Appendix F to Part 25 (Part IV) – Test Method To Determine the Flammability and Flame Propagation Characteristics of Thermal/Acoustic Insulation Materials

Sample Size: 215.9mm x 279.4mm

Heat Source: Propane Flame & Radiant Heating Coils (147 kW/m² pilot, 17 kW/m² panel).

Heat Source Exposure: One minute exposure to radiant heat, then 10 seconds pilot impingement.

Max Flame Propagation: < 5.08 cm

Max Flame Time: TBD
RADIANT PANEL TEST RESULTS
Aircraft Ducting Materials

FAA Requirement: Length < 5.08 cm, AF t < 3 seconds
EXPERIMENTAL RADIANT PANEL TEST RESULTS
Aircraft Ducting Materials

Max Time = ?

Suggested Maximum Propagation Length = 5.08 cm

After Flame Time (sec)

Burn Length (cm)
PROPOSED AIRCRAFT DUCTING TEST (CONT.):

- Some components or parts of the ducting system are installed between the hidden areas (such as the attic and cargo compartment) and the cabin area.

- **Suggestion**: Use the performance of materials that passed the OSU to determine the maximum “After Flame Time”.
FAA FIRE TESTS

FAA CABIN TESTS:
(1) 12 & 60 sec Vertical BB
(2) 15 sec Horizontal BB
(3) Seat Cushion Fire Blocking (Oil Burner)
(4) **OSU Heat Release & Smoke 65/65/200**
(5) Thermal Acoustic Insulation: Radiant Panel & Burn Through Tests
(6) Electrical: 60 deg Test

FAA “NOT OCCUPIED” AREAS TESTS:
(1) 12 sec Vertical BB
(2) Thermal Acoustic Insulation: Radiant Panel & Burn Through Tests
(3) Electrical: 60 deg Test

FAA CARGO TESTS:
(1) 45 deg Test
(2) 4.0-in/min Horizontal
(3) 12 sec Vertical BB
(4) Cargo Liner Penetration Test (Oil Burner)
(5) **OSU Heat Release & Smoke 65/65/200 (Combi/Class B+ Cargo)**
(6) Thermal Acoustic Insulation: Radiant Panel & Burn Through Tests
(7) Electrical: 60 deg Test
Experimental Radiant Panel Test Results

Aircraft Ducting Materials

Suggested Maximum After Flame Time = 45 sec

After flame > 40 sec

COATED K
C
D
K
N

After Flame Time (sec)

20
15
10
5
0

Burn Length (cm)

0 2 4 6 8 10 12 14 16 18

Taped N
X
F
2
R
E
P2
Z
T
Y

Passed All OSU
Passed One OSU
Failed All OSU
Not Tested OSU
PROPOSED AIRCRAFT DUCTING TEST:

Topics for Discussion with Task Group Members

(1) “After Flame Time” recommended to be 45 seconds

(2) Should we change the pilot flame impingement time back to 15 seconds?
PRESENTATION OUTLINE:

- Task Group Objective
- October 2005 Meeting Minutes
- Test Results (Past Quarter)
- Status of Proposed Aircraft Ducting Test
- Summary & Final Remarks
SUMMARY & FINAL REMARKS

- **OCTOBER MINUTES:** Task Group member’s policy questions cannot be answered at this time, but they will be included in the report for future reference.

- **LAST QUARTER TESTING:** There was a significant improvement (+10x) on the performance of material N during IST and RP tests when a fire retardant tape was applied to it. The same could not be said about the FR coating (Taped N or B).

- **PROPOSED TEST:** Obtain Task Group members’ feedback
 - “After Flame Time” recommended: 45 seconds (based on test data)
 - Extend pilot impingement time (from 10 sec to 15 sec)
 - Continue testing materials (as needed)
 - Initiate test protocol draft report
$T_i = 239 \, ^\circ C$
IST Burning Time = 5.58 minutes
IST Burned Area = 32,583 cm2
IST Peak Temperature = 825 °C
RP Burned Length = 16 cm
RP After Flame = >40 sec
OSU Peak Heat Released = 82.8 kW/m2
OSU Total Heat Released = 111.8 kW/m2
Smoke Density = 130.7
$T_1 = 486 \, ^\circ C$
IST Burning Time = 1.18 minutes
IST Burned Area = 1190 cm2
IST Peak Temperature = 641 $^\circ C$
RP Burned Length = 16 cm
RP After Flame = >40 sec
OSU Peak Heat Released = 66.3 kW/m2
OSU Total Heat Released = 29.6 kW/m2
Smoke Density = 4.5

SAMPLE “D”
$T_1 = 561 \, ^{\circ}\text{C}$
IST Burning Time = 0.51 minutes
IST Burned Area = 113 cm2
IST Peak Temperature = 697 °C
RP Burned Length = 2.1 cm
RP After Flame = 0 sec
OSU Peak Heat Released = 30.2 kW/m2
OSU Total Heat Released = 25.9 kW/m2
Smoke Density = 19.4
Ti = 322 °C
IST Burning Time = 1.13 minutes
IST Burned Area = 750 cm²
IST Peak Temperature = 896 °C
RP Burned Length = 16 cm
RP After Flame = >40 sec
OSU Peak Heat Released = 70.5 kW/m²
OSU Total Heat Released = 72.9 kW/m²
Smoke Density = 189
T₁ = 554 °C
IST Burning Time = 0.93 minutes
IST Burned Area = 374 cm²
IST Peak Temperature = 816 °C
RP Burned Length = N/A (3.9 cm)
RP After Flame = N/A (6 sec)
OSU Peak Heat Released = 53.4 kW/m²
OSU Total Heat Released = 66.6 kW/m²
Smoke Density = 0.5
$T_i = 358 \, ^\circ C$
IST Burning Time = 30 minutes
IST Burned Area = 1752 cm2
IST Peak Temperature = 708 °C
RP Burned Length = 16 cm
RP After Flame = > 40 sec
OSU Peak Heat Released = 179.3 kW/m2
OSU Total Heat Released = 114.2 kW/m2
Smoke Density = 175.8
SAMPLE “O”

$T_i = 615 \, ^\circ C$
IST Burning Time = 1.28 minutes
IST Burned Area = 510 cm2
IST Peak Temperature = 825 $^\circ C$

RP Burned Length = 2.3 cm
RP After Flame = 2.9 sec

OSU Peak Heat Released = 40.7 kW/m2
OSU Total Heat Released = 25.7 kW/m2
Smoke Density = 1
$T_i = 615 \, ^\circ C$

IST Burning Time = 1.28 minutes

IST Burned Area = 347 cm2

IST Peak Temperature = 797 °C

RP Burned Length = 4.2 cm

RP After Flame = 2.8 sec

OSU Peak Heat Released = 44.2 kW/m2

OSU Total Heat Released = 39.8 kW/m2

Smoke Density = 0.7
$T_i = 632 \, ^\circ C$
IST Burning Time = 1.47 minutes
IST Burned Area = 761 cm2
IST Peak Temperature = 756 $^\circ C$
RP Burned Length = 3.0 cm
RP After Flame = 0.0 sec
OSU Peak Heat Released = 30.5 kW/m2
OSU Total Heat Released = 8.9 kW/m2
Smoke Density = 0.1
$T_i = 581 \, ^\circ C$
IST Burning Time = 1.21 minutes
IST Burned Area = 653 cm2
IST Peak Temperature = 777 $^\circ$C
RP Burned Length = 3.8 cm
RP After Flame = 36.8 sec
OSU Peak Heat Released = 33.5 kW/m2
OSU Total Heat Released = 24.4 kW/m2
Smoke Density = 8.6
SAMPLE “TAPED N”

$T_i = N/A$
IST Burning Time = ~10 minutes
IST Burned Area = 111 cm2
IST Peak Temperature = 415 °C
RP Burned Length = 1.5 cm
RP After Flame = 4.4 sec
OSU Peak Heat Released = N/A
OSU Total Heat Released = N/A
Smoke Density = N/A
SAMPLE “U & U2”

- $T_i = 578 \, ^\circ C$
- IST Burning Time = N/C minutes
- IST Burned Area = 1081 cm2
- IST Peak Temperature = 779 °C
- RP Burned Length = 2.3 – 3.9 cm
- RP After Flame = 15.3 – 21.2 sec
- OSU Peak Heat Released = 42.0 kW/m2
- OSU Total Heat Released = 34.6 kW/m2
- Smoke Density = 17.6
T_i = 594 °C
IST Burning Time = 1.19 minutes
IST Burned Area = 610 cm^2
IST Peak Temperature = 816 °C
RP Burned Length = 2.1 cm
RP After Flame = 6.6 sec
OSU Peak Heat Released = 81 kW/m^2
OSU Total Heat Released = 48 kW/m^2
Smoke Density = 12
$T_i = 616 \ (366) \degree C$
IST Burning Time = 1.21 minutes
IST Burned Area = 302 cm2
IST Peak Temperature = 787 °C
RP Burned Length = 2.2 cm
RP After Flame = 1.0 sec
OSU Peak Heat Released = 146.9 kW/m2
OSU Total Heat Released = 132.7 kW/m2
Smoke Density = 21.8
$T_1 = 359 \ (616) \degree C$

IST Burning Time = 2.56 minutes

IST Burned Area = 644 cm2

IST Peak Temperature = 804 $\degree C$

RP Burned Length = 1.8 cm

RP After Flame = 26 sec

OSU Peak Heat Released = 115.3 kW/m2

OSU Total Heat Released = 120.4 kW/m2

Smoke Density = 42.7
$T_i = 623 \, ^\circ C$

IST Burning Time = 1.19 minutes

IST Burned Area = Film shrunk, Min to Duct

IST Peak Temperature = 834 \, ^\circ C

RP Burned Length = 2.8 cm

RP After Flame = 35 sec

OSU Peak Heat Released = 34.6 kW/m²

OSU Total Heat Released = 43.6 kW/m²

Smoke Density = 17.7

SAMPLE “Z”