MCC Update

Richard N. Walters Richard E. Lyon & Natallia Safronava

Federal Aviation Administration William J. Hughes Technical Center Fire Safety Branch ANG-E21 Atlantic City, New Jersey 08405

Federal Aviation Administration

Standard Test ASTM D 7309 (Method A)

Anaerobic pyrolysis at 1 K/s + complete combustion of gases at 900°C, 20% O_2

Microscale Combustion Calorimeter

Fire Growth Capacity - FGC

 $T_0 = 25^{\circ}C$ (298K) $T_1 = Ignition temperature$ $T_2 = Burning temperature$

$$FGC = \left(\frac{Q_{\infty}}{T_2 - T_1}\right) \left(\frac{T_2 - T_0}{T_1 - T_0}\right)$$

MCC procedure for FGC

- 1. Measure specific heat release rate Q' versus temperature *T* as per ASTM D7309 (5 replicates)
- 2. Integrate Q'/β versus *T* to obtain Q versus *T*, i.e., Q(T)
- 3. Obtain total heat release $Q(T_{\infty}) = Q_{\infty} = h_c(J/g)$
- 4. Obtain T_1 at 5% deflection from Q(T) baseline, i.e., at $0.05Q_{\infty}$

5. Obtain T_2 at Q_{∞} i.e., $0.95Q_{\infty}$.

6. Calculate Fire Growth capacity (FGC)

Commodity Plastics

Engineering Plastics

Specialty Plastics

Heat Resistant Plastics

FAA Microscale Combustion Calorimeter (ASTM D7309)

Fire Growth Capacity FGC is a measure of ignitability and burning rate of the material, i.e., the total fire hazard

MCC is proposed method for alternate means of compliance when a small change is made to a construction

□ ASTM Ballot on new baseline averaging method

□ ASTM FAA MCC ILS

Similarity Project Background

- Small changes in the composition of certified aircraft cabin materials are often needed due to unavailability of the original components or environmental regulations
- Recertification of the entire constructions are costly
- Aircraft manufacturers and suppliers asked the FAA to explore alternative means of complying with the FAR in 2015.
- The Material Similarity Task Group was created to develop a method and criterion for comparing flammability of samples at micro-scale using ASTM D7309 (MCC).

Similarity Criterion

$$\frac{\Delta FGC}{FGC_B} \le 0.3$$

The no-effect level of a material change at micro-scale is equal to the relative uncertainty of bench-scale FAR fire test results at the 95% confidence level, i.e., 30%, as determined by testing.

Next steps:

- Jeff Gardlin's presentation on Transport Airplane Issue List (TAIL).
- ASTM D7309-21 inter-laboratory study to-
 - $\circ~$ Determine repeatability and reproducibility of FGC
 - $\circ~$ Include ultra-low heat release aircraft phenolic resin.

ASTM D7309 Standard Revision

NEGATIVE

- Specified data window is wrong
 - Temperature Based
- Replace pages of changes with a single reference

Endpoint Selection

- Variation in Temp (X-axis) doesn't affect results much
- Should be more concerned with HRR datapoint (Y-axis)
- Artificially High or Low point

Preliminary Inter-Laboratory Study

- 4 manufacturers/licensees of the MCC
 - Deatak
 - Fire Testing Technologies
 - Concept Equipment Ltd
 - Me
- Samples sent to labs
 - 14 labs were able to participate
 - Several labs could not participate due to equipment not working
- Data received from 14 labs
 - Several labs need equipment adjusted
 - Several labs equipment was fine but data was re-analyzed and interpreted by me

Lab Comparison – Total Heat Release

Lab Comparison – Fire Growth Capacity

ASTM E691

Conducting an Inter-Laboratory Study to Determine the Precision of a Method

Repeatability

• An action, event, or other thing that is done again

Reproducibility

 Create something very similar to (something else) in a different medium or context

Samples for ASTM FAA MCC ILS

Aircraft Material - Boeing Phenolic Resin

MCC Heat Release Rate – ILS Materials

Summary & Future Work

- Inter-laboratory study Round 2 (ASTM)
 - Input values into ASTM ILS website
 - Send set of 6 samples to labs
 - Results submitted directly to ASTM
 - Updated Precision & Bias statement
 - FAA report
- ASTM Standard Revision
 - Negative
- MCC for Alternate Means of Compliance

FAA Reports - https://www.fire.tc.faa.gov/

Contact Info

Richard Walters, PhD

Federal Aviation Administration William J Hughes Technical Center Fire Safety Branch ANG-E21 Bldg 277 Atlantic City International Airport, NJ 08405

609-515-9508

richard.walters@faa.gov