Burnthrough Round Robin

Update

Introduction

- New point of contact for Burnthrough
 - Timothy Salter (myself)
- Continuing study for Dr. Robert Ochs
- Insulation burnthrough test method evaluation within lab and lab to lab consistency
 - Sonic burner
 - 2 stator configurations tested
 - PAN felt material test samples used
 - · Good repeatability for burnthrough time

2017 Comparative Test Series: Completed

- Participation by 11 labs across 3 continents

 - 1. Accufleet USA
 - 2. Airbus Germany
 - 3. Boeing USA
 - 4. DGA France
 - 5. Embraer Brazil
 - 6. FAATC USA
 - 7. Govmark USA
 - 8. Jehier France
 - 9. Rescoll France
 - 10. Resonate N. Ireland
 - 11. Triumph USA

Test with original stator (igniters and wires)

Labs shipped samples for two-part test series

- 5 PAN-8579 light felt material
- 5 PAN-8611 heavy felt material
- 6 thermal acoustic insulation blankets.
- Test with new stator (no igniters or wires)
 - 5 PAN-8579 light felt material
 - 5 PAN-8611 heavy felt material
- Test instructions e-mailed to each lab

Phase 1 Summary

- 8 out of 11 labs submitted results
- Data looked good
 - ~7% Std Dev for PAN-8579 felt material
 - ~9% Std Dev for PAN-8611 felt material
 - Burnthrough blankets below 2.0 BTU/ft²s during 4minute test at nearly every lab
 - Some labs modified blankets with slits

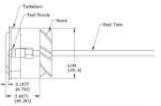
Phase 2

Phase 2 differed from Phase 1 in the following manner:

- Igniterless stator used in place of the original stator
- Inlet air pressure increased from 60 psig to 65 psig
- Only PAN materials are tested (no full-sized blanket tests)
 - 5 PAN-8579
 - 5 PAN-8611

Stator and Trabulator Configuration

The usure dules onto the first rul, in structure in the proper direction, and in bothed into place with a set screw located at the treate of clock goatino (figure 7-5-15). The triviation of placed on the end of the dust tube such the sub-located at the six of foot goatino (figure 7-5-16). That typical configuration positions the face of the status approximately 2 (627) inches (65, 26) must from the exit place of the robulator (figure 7-5-17). Refer to the Proporation of Appointment outton of this supplement for the exist positioning of the status and nebulator.


Figure 7-3-15. Location of the Stotor as the First Tube

Payers 2-5-16. Position of Techniques at the and of the Drigh Tube

Sater Translational Position

The front face of the stater must be located 2 6975 ± 0.000 inches (68.203 ± 0.5 mm) from the exit plane of the turbulance (figure 7.5-28). This state translational position is also 2.5 inches (63.5 mm) from the top of the fixed access.

Planne 7-5-38 Fuel Nazzle and Stater Locations

Status Ativil Products

The line running favorgh the set screw and geometric center of states will be used as a reference for properly unioning the rentannal position of the status. The union must be positioned to the reference then might to 0 degrees (12 of clock) from the zero gostion when looking into the former death take. (Equit 7-5-20)

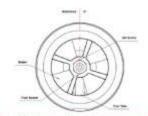


Figure 1-3-39 Stone Avail Position Gooking into shaft tubes

Phase 1 & 2 Comparison - 8579

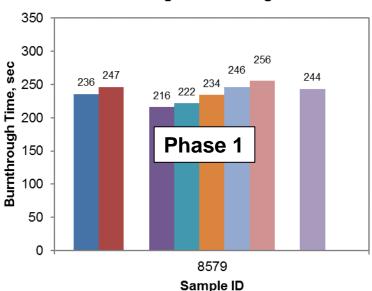
■A ■B

C

 $\blacksquare D$

■ E

■ F


G

H

■.J

K

8579 Average Burnthrough Times

Overall Average BT: 237.5 s Std Dev: 15.9 s % Std Dev: 6.7%

8579 Average Burnthrough Times

■ A*

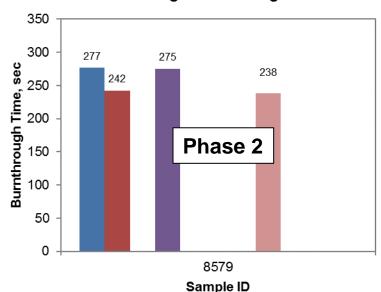
B

■ C

 $\blacksquare D$

■E

F


G

H

-1

J

K

Overall Average BT: 256.2 s Std Dev: 20.1 s % Std Dev: 7.8%

Phase 1 & 2 Comparison - 8611

A

B

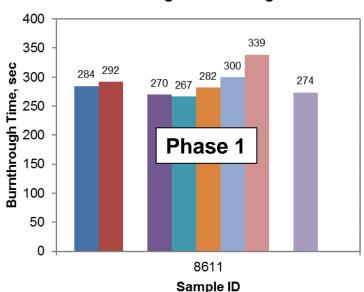
C

D

■E

■F

G


■ H

■1

J

K

8611 Average Burnthrough Times

Overall Average BT: 287 s Std Dev: 25.2 s % Std Dev: 8.8%

8611 Average Burnthrough Times

■ A*

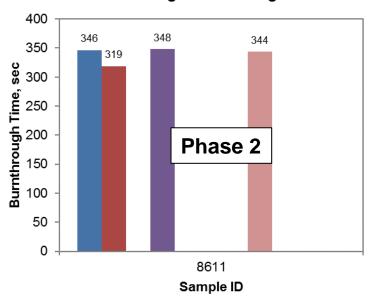
■ B

C

 $\blacksquare D$

■E

■ F


G

H

I

J

K

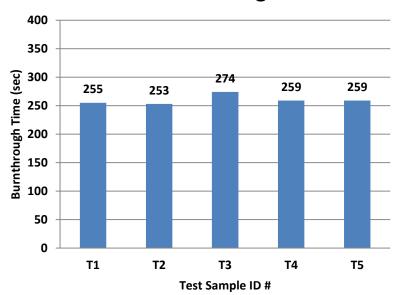
Overall Average BT: 337.8 s Std Dev: 18.8 s % Std Dev: 5.6%

Phase 2 Summary

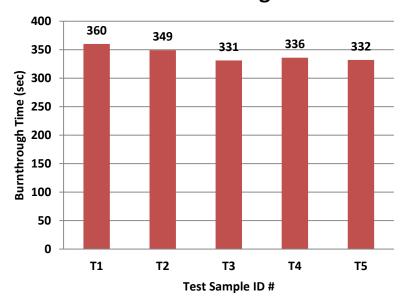
- 4 out of 11 labs submitted results
- Data showed mixed results
 - ~8% Std Dev for PAN-8579 felt material
 - 1% increase from Phase 1
 - ~6% Std Dev for PAN-8611 felt material
 - 3% decrease from Phase 1
- Longer burnthrough times compared to Phase 1
 - ~20 seconds more for PAN-8579
 - ~50 seconds more for PAN-8611

Purpose of Phase 3

Standardize Fuel Nozzle


- Monarch fuel nozzles commonly used in burnthrough testing
- Quality control is lacking
 - Actual vs. rated flow rate
 - Fuel spray pattern
- Delevan nozzles found to be much more consistant
- Used in all other burner tests
- Improved test result repeatability with Delevan over Monarch

- Conduct comparative fuel nozzle testing at FAA T.C.
 - COMPLETED
- Adjust igniterless burner settings to achieve BT times similar to original burner configuration
 - COMPLETED
- Conduct "Phase 3" of study using Delevan nozzles and new burner settings
 - Currently in progress


Phase 3: FAATC Test Results

PAN 8579 Burnthrough Times

Overall Average BT: 260.0 s Std Dev: 8.3 s % Std Dev: 3.2%

PAN 8611 Burnthrough Times

Overall Average BT: 341.6 s Std Dev: 12.5 s % Std Dev: 3.7%

Phase 3: FAATC Test Results

Lower Std Dev compared to Phase 2

- ~3.2% Std Dev for PAN-8579 felt material
 - ~4.8% decrease from Phase 2
- ~3.7% Std Dev for PAN-8611 felt material
 - 2.33% decrease from Phase 2

Similar burnthrough times compared to Phase 2

- ~4 seconds more for PAN-8579
- ~4 seconds more for PAN-8611

Phase 3

- Phase 3 differs from Phase 2 in the following manner:
 - Delevan 6.0 gal/hr, 80-degree, solid spray fuel nozzles will be used by all labs
- Phase 3 is the same as Phase2 in all other manners:
 - Stator position and air pressure
 - Only PAN materials are tested
 - 5 PAN-8579 light felt material
 - 5 PAN-8611 heavy felt material

Phase 3 status

- Delevan fuel nozzles, PAN test samples, and detailed instructions are provided
- 5 labs currently involved
- Need more participants!
- Delevan nozzles are available to all burnthrough test labs
 - Including non-participating labs

Final Notes

Chapter 24 of the Fire Test Handbook

- Recently updated to match other chapter formats
- Now includes the Sonic burner
- New round robin settings for Sonic burner added
- Take a look if you haven't already

Seeking round robin participants

- Signup in Burnthrough task group
- Or email me

Phase 3 update next meeting

Need test data from participants

Questions?

Timothy Salter timothy.salter@faa.gov 609-485-6952

