Vertical Bunsen Burner Testing of 3-D Printed Material

Presented to: International Aircraft Materials Fire Test Forum By: Steve Rehn Date: 10/30/2018

Introduction

- Test basic 3-D printed material in Vertical Bunsen Burner
- 12" × 3" × 0.060" Samples
- Need to find "borderline" material that may show differences in printing method
- Four Materials
 - Ultem 9085, Nylon-12, Polycarbonate, and PC-ABS
- Printed in 3 orientations

- Flat (XY), Sideways (YZ), and Standing (ZX)

- 0.060" (1.5mm)
- 6 layers
 - 0.01" Slice Height
 - +45/-45
- Solid
- Built in X-Y plane (printed flat)

- 0.060" (1.5mm)
- 300 layers
- 0.01" Slice Height
- Solid
- Built in Y-Z plane (printed sideways)

- 0.060" (1.5mm)
- 1200 layers
- 0.01" Slice Height
- Solid
- Built in Z-X plane (printed standing)

Ultem 9085 Printed Flat (XY direction)

10/30/2018

Ultem 9085 Printed Sideways (YZ direction)

Ultem 9085 Printed Standing (ZX direction)

10/30/2018

XY-Direction

YZ-Direction

ZX-Direction

10/30/2018

- On some 60-second tests, material would melt down to the burner
- Never any flame time when this happened, charred plastic blocked most of the flame
- Flame time seemed to depend on the shape of the material as it melted and where it pushed the Bunsen burner flame

Polycarbonate

XY-Direction

YZ-Direction

ZX Direction

Polycarbonate 12-Second Vertical Bunsen Burner

Polycarbonate

*samples that did not need to be extinguished

XY-Direction

YZ-Direction

ZX Direction

• Flames extinguished because of dripping

10/30/2018

PC-ABS

ZX Direction

PC-ABS

- XY direction had 118s flame time, 8.2 in. burn length, lots of drip flame time
- Tested YZ and ZX directions and had to extinguish the flames
- Not a good candidate for further testing

Nylon-12

XY-Direction*

YZ-Direction

ZX Direction

10/30/2018

Nylon-12 12-Second Vertical Bunsen Burner

10/30/2018

Nylon-12

- Drip flame time was difficult to measure because there were several drips that needed to be added together
- Flames extinguished because of dripping

YZ-Direction

ZX Direction

Microscale Combustion Calorimetry of 3-D Printed Materials

3D Printed Material MCC Data

Conclusion and Future Work

- Ultem 9085 is the only "good" material so far
 - Showed very minor differences in printing orientation
- Nylon-12 potentially showed a difference in printing orientation
 - Need to test XY orientation and more samples of other orientations
- Need to test different infill % next
 - More air inside sample could allow more burning
- Antero 800NA PEKK based thermoplastic
 - Available on Fortus 450MC
 - Could be good flame-resistant material to test

Questions?

Contact:

Steven Rehn Federal Aviation Administration William J. Hughes Technical Center Fire Safety Branch, Bldg. 203 Atlantic City Int'l Airport, NJ 08405 (609) 485-5587 steven.rehn@faa.gov

