HEAT RELEASE RATE Updates

2015 October Materials Meeting Atlantic City, NJ

Materials Working Group
Michael Burns, FAA Tech Center
October, 2015

AGENDA

- HR2: Design of Experiment (DOE)
 Draft Test Plan
- OSU: Airflow Split Round Robin Test Plan
- Next

DOE Draft Test Plan Concept

- Randomize 4 main parameters
- Initially use Material Simulator Test to study impacts on data

Parameter	DESCRIPTION	Min.	Avg.	Max.
System Air Flow rates	SCFM	19	20	21
Heat Flux (W/cm ²)	Center	3.60	3.65	3.70
Llaman Dilat	Air (L/min)	0.8	1.0	1.2
Upper Pilot	Methane (L/min)	1.3	1.5	1.7

Data collection:

Software

- Time
- Thermopile voltage (Real time)
- Thermopile voltage (15 minute Running average)
- Center Heat flux (Real Time)
- Center Heat flux (60 second Running average)
- Inlet air Flow (SCFM)
- Inlet air temperature

Data collection:

Manually recorded periodically

- Time
- Ambient Conditions
 - Room temp
 - Barometric Pressure
 - % Relative Humidity
- Inlet air % Relative Humidity

Data collection:

Manually recorded periodically (Continued)

- % Power to Upper globars
- % Power to Lower globars
- Methane flow rate upper pilot burner
- Methane flow rate to lower pilot burner
- Air flow rate to upper pilot burner
- Air flow rate to lower pilot burner

Run Order	Series	Data Point	Airflow (SCFM)	Center Heat Flux (W/cm2)	Upper Pilot Flame Methane (L/min)	Upper Pilot Flame Air (L/min)
1	1	PRE	20	3.65	1.5	1.0
2	1	2	19	3.60	1.3	0.8
3	1	3	19	3.60	1.3	1.2
4	1	4	19	3.60	1.7	1.2
5	1	5	19	3.60	1.7	0.8
6	1	POST	20	3.65	1.5	1.0
7	2	PRE	20	3.65	1.5	1.0
8	2	2	19	3.70	1.3	0.8
9	2	3	19	3.70	1.3	1.2
10	2	4	19	3.70	1.7	1.2
11	2	5	19	3.70	1.7	0.8
12	2	POST	20	3.65	1.5	1.0
13	3	PRE	20	3.65	1.5	1.0
14	3	2	21	3.60	1.3	0.8
15	3	3	21	3.60	1.3	1.2
16	3	4	21	3.60	1.7	1.2
17	3	5	21	3.60	1.7	0.8
18	3	POST	20	3.65	1.5	1.0
19	4	PRE	20	3.65	1.5	1.0
20	4	2	21	3.70	1.3	0.8
21	4	3	21	3.70	1.3	1.2
22	4	4	21	3.70	1.7	1.2
23	4	5	21	3.70	1.7	0.8
24	4	POST	20	3.65	1.5	1.0

Daily Calibration Routine

- Insert HFG calibration assembly in machine and set airflow and heat flux parameters at nominal values (See data point PRE).
- Allow machine to reach equilibrium (workbook, section 2.10).
- Remove HFG calibration apparatus and close all doors.
- Conduct Methane gas calibration and record all values.

Daily PRE Test Routine (Nominal Parameters)

- Light pilot burners and set as per data point PRE.
- Allow system to stabilize then record 5 minutes of data.
- Turn OFF upper and lower pilot burners.

Daily TEST Routine

• Insert HFG calibration assembly in machine and set air flow and heat flux parameters as per data point #2 for scheduled test day.

Daily TEST Routine (Continued)

- Allow system to reach equilibrium.
- Remove the HFG calibration assembly.
- Light pilot burners and set as per data point #2 for scheduled test day.
- Allow system to stabilize then record 5 minutes of data.

Daily TEST Routine (Continued)

- Systematically change inputs per Test Matrix, recording the time of each change.
- Allow system to reach equilibrium at each step before recording 5 minutes of data.
- Turn OFF upper and lower pilot burners.

Daily POST Test Routine (Nominal Parameters)

- Insert HFG calibration assembly in machine and set airflow and heat flux parameters at nominal values (See data point POST).
- Allow system to reach equilibrium.
- Remove the HFG calibration assembly.
- Light pilot burners and set as per data point POST.

Daily POST Test Routine (Continued)

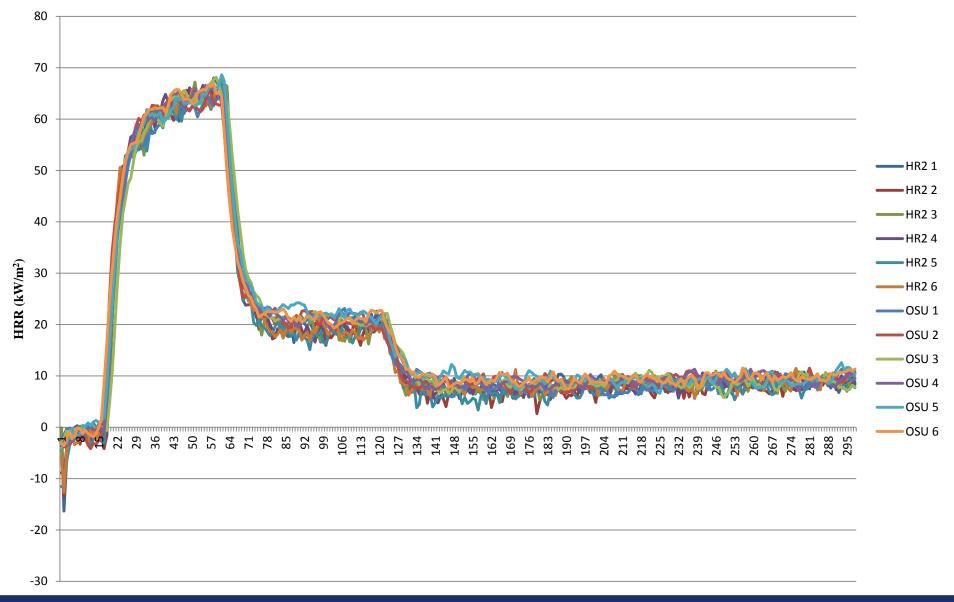
- Allow system to stabilize then record 5 minutes of data.
- Turn OFF upper and lower pilot burners.
- Repeat steps on following day until matrix is complete.

Material or Simulator Testing?

TBD

MATERIAL SIMULATOR TEST

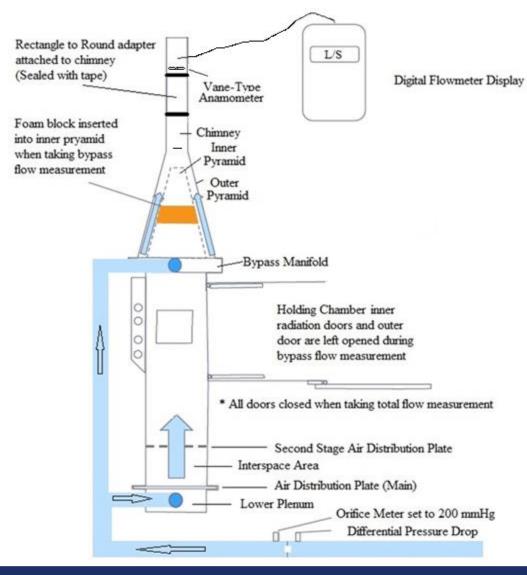
- Lower Pilot (Nominal Parameters)
 - Air set to 1.0 ± 0.2 L/min
 - Methane set to 120 ± 5 mL/min
- Upper Pilot (Nominal Parameters Initially)
 - Air set to 1.0 ± 0.2 L/min
 - Methane set via software program (1.5 L/min)
- Empty Sample Holder Inserted in Holding Chamber


MATERIAL SIMULATOR TEST

(Empty Sample Holder Inserted in Holding Chamber for 1 minute)

- START TEST (60 Seconds in Holding Chamber)
- 0:00:00 Flow rate 1.5 L/min for 15 seconds
- 0:00:15 Set flow rate to 4 L/min for 45 seconds
- 0:00:60 Set flow rate to 2 L/min for 60 seconds
- 0:02:00 Set flow rate to 1.5 L/min for 3 minutes
- 0:05:00 End Test

Material Simulator Test Using a Mass Flow Meter (Methane Gas)


HR2 Simulator Test Data

RUN	PHRR	TTP	THR
1	68	57	65
2	66	57	63
3	68	60	64
4	67	59	65
5	67	59	63
6	67	61	64
AVG	67	59	64
STDEV	0.6	1.6	0.8
% STDEV	0.9%	2.7%	1.2%

OSU Simulator Test Data

PHRR	TTP	THR
66	64	64
65	59	65
68	62	64
67	58	65
69	64	66
67	61	65
67	61	65
1.3	2.5	0.8
2.0%	4.1%	1.3%



Airflow Split Data

- Install Airflow Measuring Equipment (No plug; Doors Closed)
- Measure and record Total Airflow
- Measure and record Bypass Airflow (Plug Inserted; Doors Open)

Pressure Data

- Install lower plenum probe; measure and record (No plug; Doors Closed)
- Install interspace area pressure probe; measure and record (No plug; Doors Closed)

Data Submittal

- Submit data to Tech Center for review
- When instructed, forward equipment to next facility

Heat Flux

- Set Center Heat Flux
- Verify 4-corner uniformity
- Record baseline millivolt reading (No Pilot flames lit)

Calibration

• Conduct methane gas calibration

Testing

- Record baseline millivolt Reading (Both upper and lower pilot lit)
- Test coupons per heat release requirements of FAR 25.853 Appendix F (ONLY POSITIVE HEAT RELEASE VALUES RECORDED).
- Submit **RAW HEAT RELEASE RATE DATA** to FAA Technical Center (No thermopile millivolt data please)

NEXT

- Complete DOE Test Plan (Task Group input)
- Follow-on Material Testing (DOE)
- Begin Airflow Measurement Round Robin Testing
- <u>Announcement</u>: 2016 NBS Smoke Density Round Robin (Spring / Summer Timeframe)

QUESTIONS?

"The only place success comes before work is in the dictionary"

Vince Lombardi

