International Aircraft Materials Fire Test Working Group Meeting

Seat Cushion Test Method Update

Presented to: International Aircraft Materials Fire Test Working Group, Indianapolis, Indiana

By: Tim Salter

Date: October 16-17, 2012, Indianapolis

Federal Aviation Administration

Previous Meeting Items

- Finalized sonic burner settings for Park replacement
- FAA test results have shown new settings will allow sonic burner to reproduce Park test results
- Looking into stator/turbulator alternatives which could simplify sonic burner setup and increase repeatability in test results

Summary for this Meeting

- Continue work with seat burner settings
 - Ignition wire positioning
 - Igniter positioning
 - New stator and nozzle settings
- Standardize leather seat cushion restraints
- Round robin update
 - 5 of 8 labs have completed testing

Current Seat Burner Settings

- Recommended Nozzle: Delevan 80°B 2.0 gph
- Nozzle Depth: 3/16"
- Stator Depth: 2 11/16"
- Stator Angle: 0° (igniter centerline from vertical)
- Igniter Position: (see pictures)
- Ignition Wires: (see pictures)

Ignition Wires

- New wire length and positions minimize airflow disturbance
- Standardized wire positions to minimize variability in burner performance and data results
- Improved repeatability

Ignition Wire Positions

Igniter Positions

- Standardized igniter
 positions
- Gap between igniters
 1/8"
- Nozzle center to igniter
 ¹/₄"
- Nozzle face to igniter

- 1/8"

*Diagrams shown only for igniter tip spacing

Seat Cushion Testing

3 of each cushion type tested per trial

Revised Stator

- New stator eliminates igniters and ignition wires in draft tube
- Intended to simplify burner settings and setup
- Attempt to reduce nonsymetrical airflow in burner draft tube, and increase test result consistency

Revised Stator

Revised Stator

- Test results did not correlate well with Park test results
- Dax foam weight loss correlated well with Park burner results, but Airflex weight loss was significantly less than Park results
- Igniterless stator requires external ignition
- No further testing was pursued

Flame Retention Head

- Eliminates the need for a stator and turbulator
- Fits on end of sonic burner draft tube
- Initial test results show potential

Flame Retention Head

- Extremely low variation of temperature
- Less than 1°F variation of averaged temperatures

Flame Retention Head

- Industry has asked that a standardized method of restraining leather seats to the burn rig be developed
- Work had been performed in the past, but no final conclusions had been made
- Data has shown that there is not necessarily a correct or incorrect method of restraining leather cushions
 - However, restraints should not impede the flame

Items to consider

- Number of restraints
- Spacing of restraints
- Type of restraint (safety wire, hook and loop, etc.)

• Goal

 Devise a method of restraint to maximize repeatability, but not overcomplicate restraint method in order to keep sample preparation time to a minimum

Restraint Method #1

- 4 safety wire loops on vertical cushion
- 3 safety wire loops on horizontal cushion
- Wires evenly spaced 5 inches apart

Advantages

- No favoring one part of the cushion (even spacing)
- Multiple wires securely restrain cushions
- Disadvantages
 - More wires take longer to prepare sample rig

Restraint Method # 2

- 2 safety wire loops on vertical cushion located approximately 2" in from top and bottom
- 1 safety wire loop on middle of horizontal cushion

Advantages

Fewer wires reduce sample rig preparation time

Disadvantages

 Fewer wires used to restrain cushion may have impact on test results

Restraint Method #1

Restraint Method #2

Restraint Method # 3

 Multiple stainless steel welding rods used to "clamp" cushion to test rig

Advantages

- Reduce sample rig preparation time
- Reuse restraints for multiple tests

Disadvantages

- Heavy gauge wire/rod may impede flame

Restraint Method #3

- Round robin ongoing since April 2012
- 8 labs are currently participating
- 5 labs have completed testing
- Each lab was provided with a Delevan 80°B 2.0 gal/hr fuel nozzle to use during testing
- Labs asked to setup burners using new settings developed by FAA
- Labs asked to calibrate using new 1/8" thermocouples
- Each lab will receive cushions for testing when FAA receives calibration data

Fireblock Cushion Burn Lengths and Weight Loss Percent

•Lab A is data collected at FAA Technical Center

Dax Cushion Burn Lengths and Weight Loss Percent

•Lab A is data collected at FAA Technical Center

Airflex Cushion Burn Lengths and Weight Loss Percent

•Lab A is data collected at FAA Technical Center

Future Items

Complete round robin

- Gather and analyze data from labs
- Refine burner settings as needed

Finalize leather seat restraints

- Need input from industry
- Complete cushion testing
- Flame retention head development

Questions?

