International Aircraft Materials Fire Test Working Group Meeting

Task Group Session on Revised Cargo Liner Test

Presented to: International Aircraft Materials Fire Test Working Group, Indianapolis, Indiana

By: Tim Salter, FAA Technical Center Date: October 16-17, 2012

Federal Aviation Administration

Main Objective: Transition from Park Burner to Sonic Burner

Task Group Session on Cargo Liner Test June 20, 2012

Baselining of Park Burner

- 1. Generate calibration temperature results with FAATC Park burner apparatus
 - Results will be used to calibrate Sonic burner apparatus

- 2. Generate test results with FAATC Park burner apparatus
 - Results will be used to correlate sonic burner (B/T times and temp vs. time plots)
 - 3 styles of liner and 1 PAN felt have been tested
 - 2 additional materials also tested

Initial Sonic Burner Settings and Calibration

8 Positions (2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0) X 4 Angles (0°, 90°, 180°, 270°)

= 32 Combinations

Refining Sonic Burner Settings

- Burner then tested using a number of smaller adjustments
- Adjustments made in positions where burner showed adequate performance
- Stator face to turbulator exit plane varied:
 - 2.75, 3.0, and 3.25 inches (3 positions)
- Stator rotational position on fuel rod
 - 0-360° in increments of 45° (8 positions)
- Nozzle depth from turbulator exit plane
 - 5/16, 7/16, and 9/16 inches (3 positions)
- Total of 72 unique combinations tested

Refining Sonic Burner Settings

Cargo Sonic Burner Settings

- Sonic burner settings for use as Park burner replacement
 - All depths are measured from the exit plane of the turbulator to the nozzle tip or front stator face
 - Recommended Nozzle: Delevan 2.0 gal/hr type B
 - Nozzle Depth: 9/16"
 - Stator Depth: 3 5/16"
 - Stator Angle: 270° (centerline from vertical)
 - Turbulator: Notch will face bottom of tube (180°)
 - Air Pressure: 47.5 psi
 - Air Temperature: 40-60°F
 - Fuel Temperature: 32-52°F

8

New Standardized Igniter Positions

- Gap between igniters
 1/8"
- Nozzle center to igniter
 ¹/₄"
- Nozzle face to igniter
 - 1/8"

*Diagrams shown only for igniter tip spacing

Igniter Positions

Ignition Wires

- New wire length and routing scheme minimize airflow disturbance
- Wires should be positioned exactly as shown in picture
- It is important to ensure each wire crosses over or under the other wire or fuel rod as shown
- There should be no slack or excess wire length
- Wire lengths (tip of metal wire terminal to rear of draft tube)
 - Red: 13.75"
 - Black: 13.5"

New Ignition Wire Routing Method

Final Sonic Settings: Calibration

- All thermocouples must read at or above 1600°F
- It is likely that the sonic burner shows lower temperatures due to using 1/8" thermocouples
- Sonic test results still show higher temperatures

Final Sonic Settings: Testing

TexTech PAN 8579

- Park Burner: 33 samples tested
- Sonic Burner: 39 samples tested
- Thick Cargo Liner
 - Park Burner: 10 samples tested
 - Sonic Burner: 12 samples tested

Final Sonic Settings: Test Results

Final Sonic Settings: Test Results

Final Sonic Settings: Conclusion

- Calibration temperatures are lower than Park calibration temperatures
- Temperature readings during cargo liner testing show slightly elevated sample backface temperatures using sonic burner versus Park burner
- Test results show that these settings will allow the sonic burner to perform well as a suitable replacement for the Park burner

Revised Stator

- New stator eliminates igniters and ignition wires in draft tube
- Intended to simplify burner settings
- No noticeable improvement compared to original stator design
- Revised stator had a negative effect on test results compared to Park burner results

Flame Retention Head

- Eliminates the need for a stator or turbulator
- Fits on end of burner draft tube
- Initial testing shows good potential
- Plans for future testing

Thermocouple Calibration

- Looking further into TC degradation and changing temperature readings
- Calibration unit has been delivered to FAA Technical Center
- Begin testing and calibration of 1/8" thermocouples
- Determine effect of extreme heat cycling on thermocouples
 - Possibly predict changes in temperature readings based on number of heat cycles

Cargo Sonic Burner Round Robin

- Round robin for sonic cargo burner currently underway
- 3 labs currently participating
- FAA has supplied each lab with a fuel nozzle, burner cone, and test samples
- 3 types of samples provided
 - Heavy, woven fiberglass/epoxy liner (5 pieces)
 - Light, semi-rigid liner (3 pieces)
 - Polyacrylonitrile (PAN) felt (5 pieces)

Cargo Sonic Burner Round Robin

- Different sample materials will burn through at different rates, or show different temperature profiles measured 4 inches from the back-side of the sample
- Results should further substantiate sonic burner settings developed as a replacement for the Park burner
- Currently looking for more labs with cargo sonic burners that are interested in participating in round robin

- FAA's sonic cargo burner uses hard lines for fuel and air supply plumbing
- Current FAA burner arrangement limits test
 chamber construction/design due to burner height
 - Difficult to see back-side of sample in some test chambers
- FAA testing soft lines which may allow more flexibility with regard to burner construction

- Distance from test chamber floor to exit plane of burner cone
 - FAA Park burner height: 54"
 - FAA sonic burner height: 53"
- FAA sonic burner cone exit plane is currently 1" lower than FAA Park burner cone exit plane
 - Sonic burner was constructed with the intent that it be no taller than the Park burner
 - Consider possible effects of air supply plumbing
 - Bends/elbows have shown to impact burner performance

- Industry has suggested relocating muffler, elbow, and sonic choke to reduce the height of the burner cone exit plane and sample rig
- FAA burner air supply plumbing shown in picture

- Muffler packed with reticulated foam helps to even out the flow of the air after elbow
- Change in airflow direction due to elbow has shown to impact burner performance without use of muffler/foam
- Distance from top of muffler to test chamber floor is currently 17"

- Utilizing a ³/₄" ID rubber hose and appropriate pipe fittings, the height of the burner may be lowered 8"
- The height of the burner will depend upon the NPT fittings/adapters used, and also the bend radius of the flexible air supply hose

- Tests previously performed using the FAA's seat sonic burner have shown that burner performance is sensitive to changes in air supply plumbing
- Cargo burner performance may be impacted by changing current plumbing arrangement
- In the process of testing alternative plumbing arrangements
 - Flexible air supply hose
 - Relocating muffler and sonic choke

Planned Activities

Finalize burner settings by conducting temperature calibrations

Complete testing of samples to ensure sonic equivalency to Park

Begin round robin for sonic cargo burner 📈

Begin burner testing using flexible air supply line

Continue development/testing of flame retention head

Continue investigation of thermocouple degradation using calibration device

Conduct testing of various cargo design features to support development of advisory material

Questions?

