2012 OSU Round Robin & HR2 Updates

2012 October Materials Meeting Indianapolis, IN

Materials Working Group

Michael Burns, FAA Tech Center

October, 2012

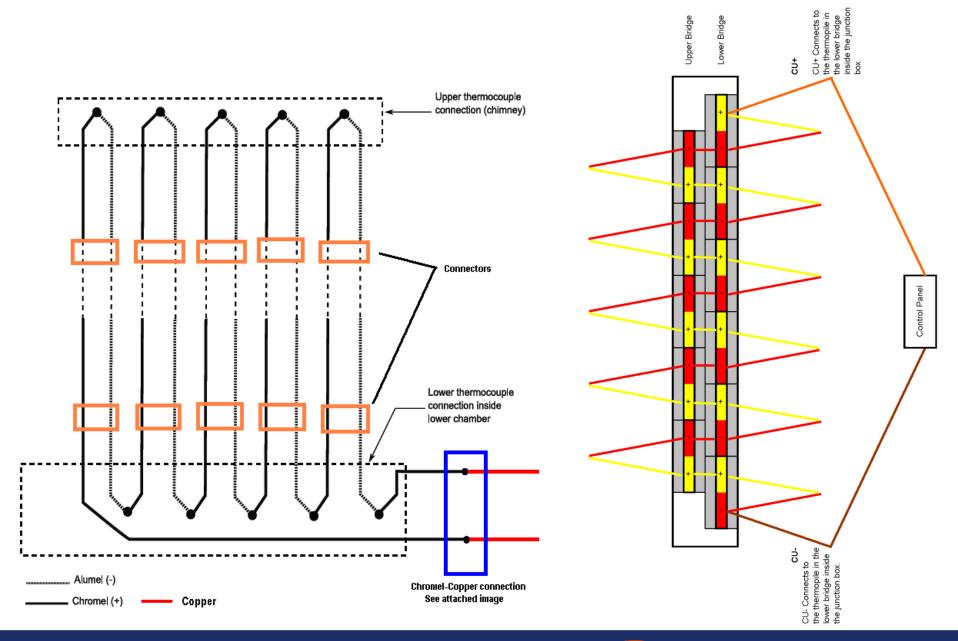
AGENDA

2012 Round Robin

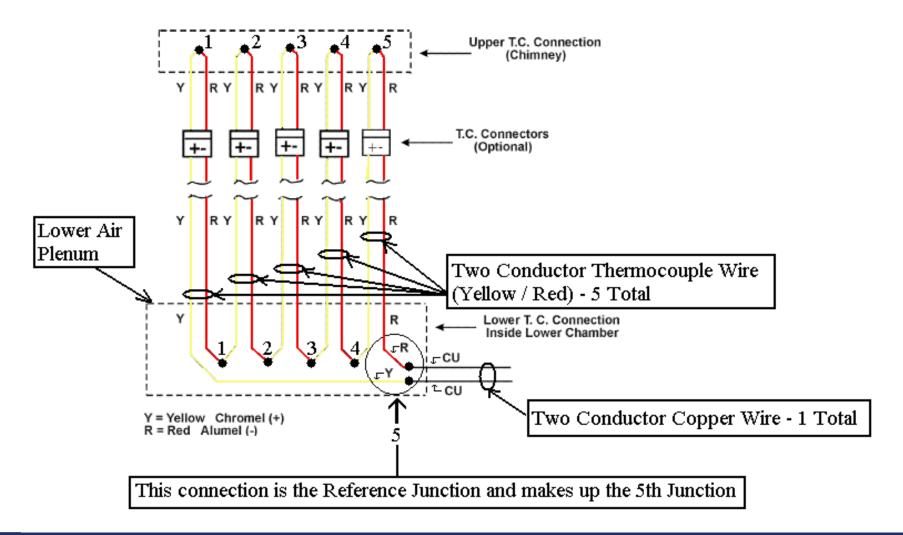
- Issues
- Data Analysis

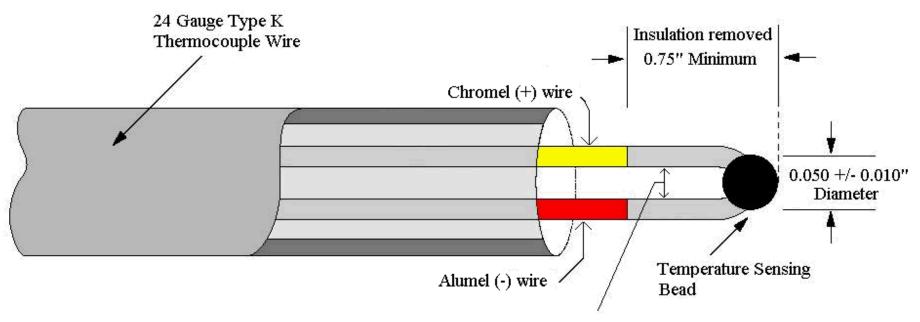
HR2 Update

Next


- 36 Participating OSU's
- 4 Samples Tested (3 Specimens Each)
 - 2 Honeycomb Panels
 - (Dark Brown & Light Brown)
 - 2 Thermoplastic Panels
 - (Black, Tan or Blue)

Issues / Problems Found


- Thermopile Wiring
 - 21 Total Responses
 - 9 Incorrectly Wired
 - 4 Unsure
- Air Leaks



Reference Junction Errors

Thermocouple Bead Construction

Note: Spread wires apart so they only make contact where they are joined together at the end.

Air Leaks (Areas to Inspect)

* Important to remember air flow is metered and ANY leaks in system may effect results!

- Orifice Meter

Tubing and Fittings from Orifice Plate to Manometer (Upstream/Downstream)

Joints in Piping from Orifice Plate to Lower Plenum / Cooling Manifold

- Lower Plenum

1/4" Aluminum Air Flow Metering Plate

Lower Seal (Lower Plenum to ¼" Aluminum Plate)

Upper Seal (¼" Aluminum Plate to Lower Flange of the OSU)

Wiring Pass Through(s) (Thermopile / Inlet air temperature probe)

Access Covers

Air Leaks (Areas to Inspect)

- Main Body

Second Stage Plate Perimeter (120 Holes)

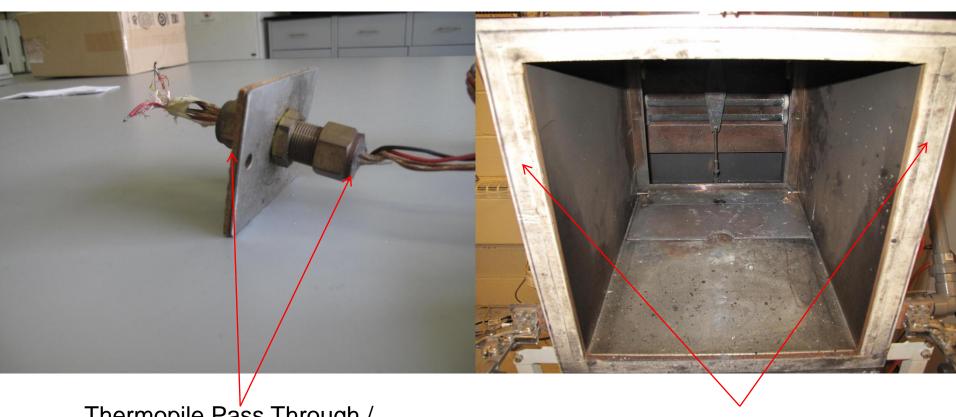
Holding Chamber Outer Door Seal

Globar Insulators

Seams (Main Body / Globar Pan)

Access Panels

- Pyramidal Section Seals


Lower Seal (OSU Flange to Inner cone Flange)

Middle Seal (Inner Cone Flange to Cooling Manifold)

Upper Seal (Cooling Manifold to Outer Cone Flange)

Exhaust Stack to Outer Cone

Thermopile Pass Through / Access Panel

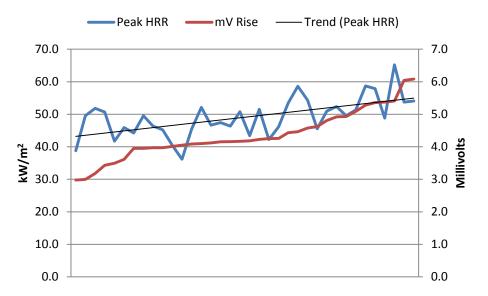
Holding Chamber Outer Door Seal

Data Analysis

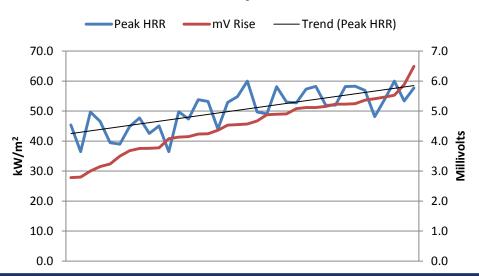
- Quantify Labs Overall Performance in Round Robin
- Assist Labs In Better Understanding Range of Data Being They Are Producing
- Develop Troubleshooting Guide?

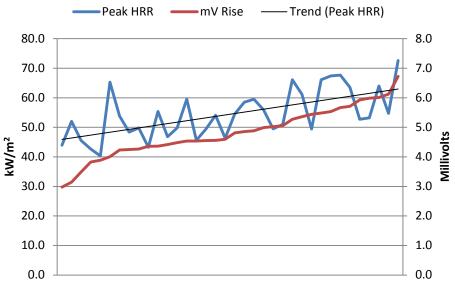
Trend Analysis - Peak Millivolt Rise Data from Baseline

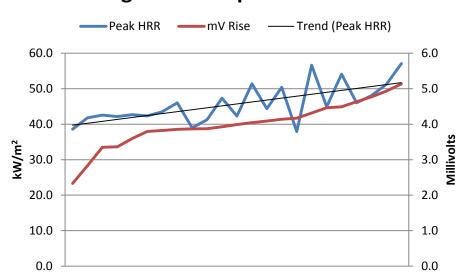
mV Rise =
$$\left(\frac{1}{Cal.Factor}\right)$$
 * PHRR


Terms:

Cal. Factor = $kW/mV*m^2$


Peak Heat Release Rate = kW/m²


Dark Brown Honeycomb Panel


Black Thermoplastic Panel

Light Brown Honeycomb Panel

Light Thermoplastic Panel

Avg. Cal. Factor Range 10 – 13 kW/mV*m²

Note: Labs Who Reported Peak HRR values greater than 10% from the average 3 or more times (of 4 specimens tested)

↓ mV Rise ~ ↑ Cal. Factor

Low mV Rise Labs	kW/mV*m2
B07	16.5
B10	14.8
A18	12.7
B04	16.3
B14	13.0
Average	14.7

High mV Rise Labs	kW/mV*m2
B09	8.9
B15	8.9
A07	11.1
A24	9.1
B06	10.8

Average

↑ mV Rise ~ ↓ Cal. Factor

9.8

Total HR	Peak HRR	mV Rise				
(+/-10% from Avg)	(+/-10% from Avg)	(+/-10% from Avg)	Rank#	Range		
		Low	1			
	Low	High	2			
		Average	3	1 to 9		
		Low	4			
Low	Average	High	5			
		Average	6			
		Low	7			
	High	High	8			
		Average	9]		
		Low	10			
	Low	High	11			
		Average	12			
		Low	13			
Average	Average	Average	14	10 to 18		
		High	15			
		Average	16			
	High	Low	17			
		High	18			
		Average	19			
	Low	Low	20			
		High	21			
		Average	22			
High	Average	Low	23	19 to 27		
		High	24			
		Average	25			
	High	Low	26			
		High	27			

Ranking System Normal Operating Criteria: Average Range = 10 to 18, % STDEV = 60% or Less

Lab Code	D.H.P	L.H.P	BLACK T.P	TAN T.P	BLUE T.P	Avg	% STDEV	NOTES
A10	3	5	3		1	3.00	54%	INSPECTION OF EQUIPMENT/PROCEDURES ADVISED
A09	15	3	3	3		6.00	100%	INSPECTION OF EQUIPMENT/PROCEDURES ADVISED
B14	10	1	1		16	7.00	105%	INSPECTION OF EQUIPMENT/PROCEDURES ADVISED
B07	13	4	13	1		7.75	80%	INSPECTION OF EQUIPMENT/PROCEDURES ADVISED
B05	6	14	1		14	8.75	73%	INSPECTION OF EQUIPMENT/PROCEDURES ADVISED
A02	14	18	1	6	6	9.00	76%	INSPECTION OF EQUIPMENT/PROCEDURES ADVISED
B11	3	6	15	15		9.75	63%	INSPECTION OF EQUIPMENT/PROCEDURES ADVISED
A12	10	27	1	6		11.00	103%	INSPECTION OF EQUIPMENT/PROCEDURES ADVISED
A06	3	1	15	27		11.50	105%	INSPECTION OF EQUIPMENT/PROCEDURES ADVISED
B17	14	10	1	22		11.75	74%	INSPECTION OF EQUIPMENT/PROCEDURES ADVISED
A24	15	15	15	3		12.00	50%	APPARATUS APPEARS TO BE OPERATING NORMAL
A01	4	14	14	16		12.00	45%	APPARATUS APPEARS TO BE OPERATING NORMAL
A14	14	16	14	4		12.00	45%	APPARATUS APPEARS TO BE OPERATING NORMAL
A23	15	18	14	3		12.50	52%	APPARATUS APPEARS TO BE OPERATING NORMAL
B15	15	15	15		5	12.50	40%	APPARATUS APPEARS TO BE OPERATING NORMAL
A20	12	3	15	24	14	13.60	55%	APPARATUS APPEARS TO BE OPERATING NORMAL
A21	14	10	27	6		14.25	64%	INSPECTION OF EQUIPMENT/PROCEDURES ADVISED
A26	22	22	10		4	14.50	62 %	INSPECTION OF EQUIPMENT/PROCEDURES ADVISED
A05	27	14	6	14		15.25	57%	APPARATUS APPEARS TO BE OPERATING NORMAL
A16	6	14	24		18	15.50	49%	APPARATUS APPEARS TO BE OPERATING NORMAL
A18	14	23	13	13		15.75	31%	APPARATUS APPEARS TO BE OPERATING NORMAL
A25	10	14	18	22		16.00	32%	APPARATUS APPEARS TO BE OPERATING NORMAL
A22	15	12	14	24		16.25	33%	APPARATUS APPEARS TO BE OPERATING NORMAL
A17	15	12	27	14		17.00	40%	APPARATUS APPEARS TO BE OPERATING NORMAL
B10	23	10	13	23		17.25	39%	APPARATUS APPEARS TO BE OPERATING NORMAL
A04	14	27	14		14	17.25	38%	APPARATUS APPEARS TO BE OPERATING NORMAL
B04	23	26	13		10	18.00	43%	APPARATUS APPEARS TO BE OPERATING NORMAL
B08	22	13	22		22	19.75	23%	INSPECTION OF EQUIPMENT/PROCEDURES ADVISED
A03	14	14	27	27	22	20.80	31%	INSPECTION OF EQUIPMENT/PROCEDURES ADVISED
B09	27	15	27		15	21.00	33%	INSPECTION OF EQUIPMENT/PROCEDURES ADVISED
A07	27	27	18		14	21.50	30%	INSPECTION OF EQUIPMENT/PROCEDURES ADVISED
B03	14	22	27		25	22.00	26%	INSPECTION OF EQUIPMENT/PROCEDURES ADVISED
B06	27	27	14		27	23.75	27%	INSPECTION OF EQUIPMENT/PROCEDURES ADVISED
A11	25	22	25	25		24.25	6%	INSPECTION OF EQUIPMENT/PROCEDURES ADVISED
A13	22	27	22	27		24.50	12%	INSPECTION OF EQUIPMENT/PROCEDURES ADVISED

Heat Release Round Robin Summary

- Low mv Rise / PHRR Trend Observed In Data
- High / Low Cal. Factor Seem To Correlate With mV Rise
- Ranking Number Based on Total HR, PHRR and mV Rise Appears To Be a Reasonable Assessment

Possibly Include Other Parameters?

 Labs Should Investigate Cause Of High / Low Ranking (e.g. Thermopile Issues, Air Leaks etc.)

Chapter HR Updates

I. Chapter HR Test Method

II. Chapter HR Supplement

Support documentation such as video's, photo's and examples pertinent to this test method.

Periodically updated document

III. Chapter HR Appendix

Informational material pertinent to this test method such as manufacturer's, part numbers and suppliers of products that have been found suitable.

Periodically updated document

IV. Advisory Circular

Guidance material on what / how to test. It describes acceptable means, but not the only means, for demonstrating compliance with the applicable regulations.

Chapter HR Updates - ADDED

HR.2.9 NIST Traceability

A calibration entity using NIST traceable calibration instrumentation.

HR.2.10 Stability

The term "stable" as it relates to heat flux density and chamber equilibrium is expressed in terms of % standard deviation over a defined time period.

Heat flux

Heat flux gauge millivolt signal that varies less than 5.0% standard deviation over the last 60 seconds.

Chamber equilibrium

Thermopile millivolt signal that varies less than 5.0% standard deviation over the last 15 minutes commencing no sooner than 30 minutes after turning the power to the globars on.

Tolerance Table (From Supplemental Section)

Chapter HR Updates - REMOVED

Section 4.1

"flat duct board" from the performance description of the insulation.

HR.2.7 Methane Gas (CH4)

"and adjusted to a supply pressure of 20 ± 2 psig".

"Air used to mix with Methane gas for the upper and lower pilot flamelets shall be adjusted to a supply pressure of 30 ± 2 psig".

* Need to put dimensional tolerances on drawings.

Chapter HR Supplement Update

- Replaced "or equivalent" with "this product or product of similar specification or function has been found suitable."
- List of manufacturers and manufacturer's part numbers will be included in appendix for this test method and not in the supplemental section.
- Removed subjective language concerning the aluminum foil, e.g. the word "household"
- Removed specification of setting of device specific items, e.g. pressure setting of gas to mass flow controller, and other such references.
 - Note: The rational is the inlet pressure to the mass flow controller is dependent on the manufacturer of the MFC recommendation.
- Moved tolerance table to main Chapter HR document (Section 4)

NEXT

- Complete Chapter HR, Supplemental Section and Appendix
- Continue to Develop Round Robin Ranking System (Analyzing Tool) Within Task Group
- Continue Long Term Repeatability Testing of Prototype

Brain Teaser

What fruit has its seeds on the outside?

Answer: Strawberry

