Flame Propagation Capability Analysis:

Alternative Small Scale Test

for Unfaced Microlite AA® Blankets

Monroe Shumate 6/05

Purpose of Study

- Confirm/verify unfaced Microlite AA glass blankets comply with FAA flame propagation requirements
- Determine product capability

Scope of Product Tested

- Density 0.34 pcf to 1.5 pcf
- Thickness 3/8" to 1"
- Binder content 13% to 20%
- Top vs bottom surface
- Evaluate product from multiple production runs (5 code dates per product over 4 year period)

Test results

- Flame Propagation
- After Flame

No failures No failures

Test equipment – FAA test rig (gas & electric)

Test Results – Partial List

Product		Prem .34 pcf x 1"			Std 0.42 pcf x 1"			Std 1.5 pcf x 3/8"		
Sample	Blanket	AF*	FP	R	AF*	FP	R	AF*	FP	R
#	Orientation	(Sec)	(In)	P/F	(Sec)	(In)	P/F	(Sec)	(In)	P/F
ID.		80402636			6246			90203630		
1	Тор	0	0	Р	0	0	Р	0	0	Р
2	Тор	0	0	Р	0	0	Р	0	0	Р
3	Тор	0	0	Р	0	0	Р	0	0	Р
4	Bottom	0	0	Р	0	0	Р	0	0	Р
5	Bottom	0	0	Р	0	0	Р	0	0	Р
6	Bottom	0	0	Р	0	0	Р	0	0	Р
ID.		102202323			12212223 ½" thick			102212323		
1	Тор	0	0	Р	0	0	Р	0	0	Р
2	Тор	0	0	Р	0	0	Р	0	0	Р
3	Тор	0	0	Р	0	0	Р	0	0	Р
4	Bottom	0	0	Р	0	0	Р	0	0	Р
5	Bottom	0	0	Р	0	0	Р	0	0	Р
6	Bottom	0	0	Р	0	0	Р	0	0	Р

AF – after flame FP- flame propagation R - results

Capability Analysis

Process Capability Analysis for After flame

No capability analysis performed on Flame propagation since there were no failures.

Development small scale test (In process test method for plain fiber glass)

- Simple/quick QA check
- Simple design/operation
- Short test cycle
- Quick start-up

Reproducible Correlation to FAA test

Methodology

- Multi-factorial DOE to generate samples with flame propagation or after flame
- Establish product standards utilizing FAA test rig
- Design and build small scale radiant panel
- Develop & verify test parameters
 - Establish robust test setting
 - Conduct Gage R&R (Reproducibility & Repeatability)

Equipment

Radiant Panel

Small oven
Large viewing window

Radiant source

Horizontal orientation

Multiple elements

Preset height from sample

Power Control

 Heat flux control Constant power Variable voltage regulator Preset input - (voltage/amp)

• Temperature measurement Type "K" thermocouple

Flame source

- Butane flame
- Self igniting
- Flame length 1" to 1 $\frac{1}{2}$ "
- Flame angled 20 degrees
- Burner 1/4" 1/2" from sample

Multi-factorial DOE design Produce samples to show flame propagation or after flame

- Design layout 3 factor multi-variable
- Conduct plant trial to produce samples
- Evaluate samples at FAA Identify which samples show flame propagation and/or after flame

Multi-Factorial Design

FAA Radiant Panel tests (Electric Panel)

- Evaluate samples from DOE
- Check for Flame propagation
- Check for After flame

Results:

- One sample showed Flame propagation
- No samples showed After flame

Develop test parameters for small scale test

- Use results from FAA Test Rig as control
- Goal Provide similar results as FAA test rig
- Establish test parameters
 - power setting
 - temperature
 - time
 - measurement technique

Robust test setting

- Flame Propagation Parameters provide similar results to FAA tests:
 - Power settings voltage & amperage
 - Temperature (Start Temp 385F)
 - Flame length (1 "to 1 1/2")
 - Test time (7-10 seconds)
- After Flame
 - No after flame was observed
 - <u>Results same as FAA</u>

Gage R&R Reproducibility & Repeatability

- Gage R&R was < 23% Meets criteria for use as test method for process control
- < 2% for Reproducibility operator factor
- < 23% Repeatability equipment

Statistical baseline gage R&R allows for process control < 30%

Comparison of FAA Radiant panel to Small scale test

- Results same for either method
- FAA radiant panel is primary test standard
- Small scale test method considered secondary standard
- Small scale test acceptable for use as process monitor for testing unfaced fiber glass

Recap

- Capability analysis <1 chance in a million for Microlite AA failure for after flame or flame propagation (for product tested using FAA radiant panel)
- JM continue to certify to FAR 25.853 Appendix F part I standard for flame spread and punking (standard used for all product tested for study)
- JM implement use of small scale radiant test panel as part of quality assurance program
- Test Report E436-T-03973 Available for Review (shumatem@jm.com)

