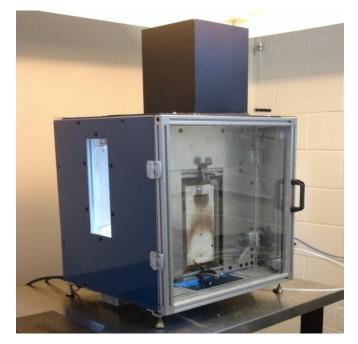
VFP Update

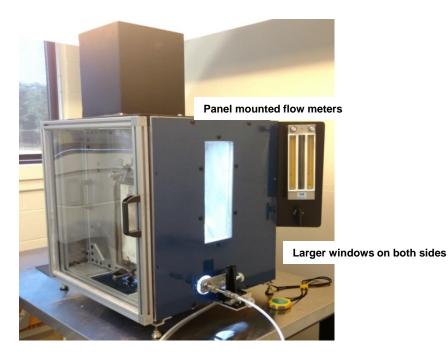
Presented to: IAMFTWG

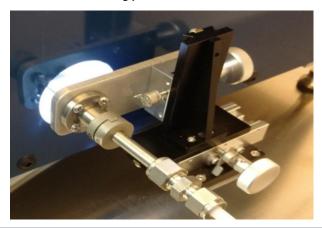
By: Robert I Ochs

Date: March 7 2017

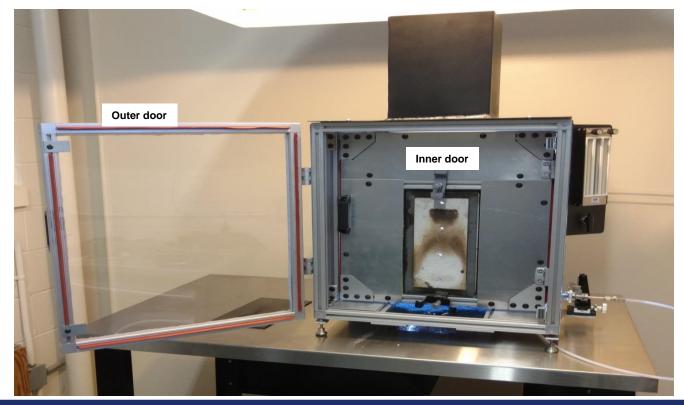
Introduction


- Carbon fiber composites are being used more frequently in aerospace applications
 - Increased strength
 - Lower density
 - Better corrosion resistance
- New designs of commercial transport airplanes include primary and secondary structure constructed from carbon fiber composites
- Current FAR's do not require flammability testing for fuselage skins or structures, as traditional designs are inherently non-flammable
 - Special Conditions for certification of fire resistance of composite fuselage
 - Must demonstrate level of safety equivalent to or better than traditional constructions
- To continue with the FAA's efforts to enhance in-flight fire safety, materials in inaccessible areas of the cabin should meet a flammability test based on the "block of foam" fire source

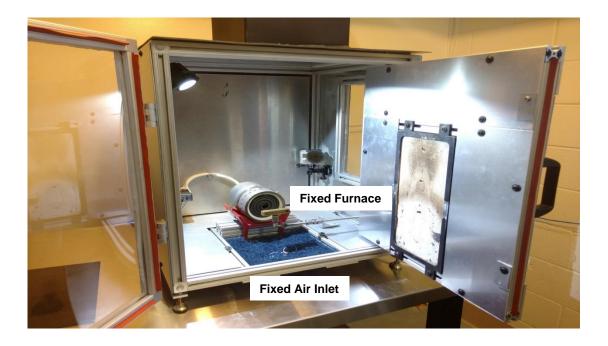

Introducing VFP 3.0


- New and improved VFP
- Features:
 - Smaller footprint
 - Controlled air inlet
 - Double-door system to keep backside smoke out of lab
 - Larger viewing windows

VFP 3.0 Features



Traversing pilot flame mechanism



VFP 3.0 Features

VFP 3.0 Features

New Power Supply

- Keysight Technologies 6802A Basic AC
 Power Source
 - Max output power 1000 W
 - Max voltage 270 V
 - Max current 10 A
 - VFP requires 706 W, 112 V, 6.3 A
- Built-in accurate measurement of Voltage, Current, and Power
 - Accuracy:
 - Voltage ±0.25% of reading + 0.15V (typical)
 - Current ±0.25% of reading + 0.04A (typical)
 - AC Power ±01% of reading + 1W (typical)
 - Uses SCPI commands (Standard Commands for Programmable Instruments) to control and query measurements of voltage, current, and power

Marked States	

New Power Supply. Variac

OR

- Keysight 6802A
 \$4300

Variac - \$1077

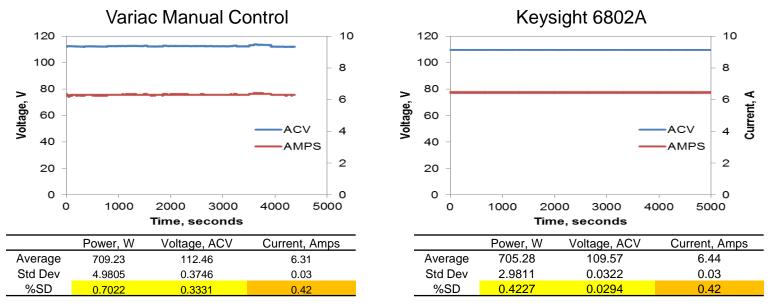
- Keithley digital multimeter
 - \$1940
- Keithley expansion board

 \$500
- Current transducer - \$100
- Total Cost
 - \$3617

Power Supply Calibration

	rating AC m						
<u>1-1. Volt</u>	age setting						
Accura	acy:*±0.3	80% of Range	/ ± 0.25% of	Range	*(135 V Range/ 27	0 V Range)
Mode	Range	Voltage	Frequency	Lower limit	Measurement	Upper limit	Status
AC	135 V	13.5 V	55.0 Hz	13.10 V	<u>13.50 ∨</u>	13.90 V	PASS
AC	135 V	67.5 V	55.0 Hz	67.10 V	67.53 V	67.90 V	PASS
AC	135 V	135.0 V	55.0 Hz	134.60 V	135.03 V	135.40 V	PASS
AC	135 V	13.5 V	420.0 Hz	13.10 V	13.52 V	13.90 V	PASS
AC	135 V	67.5 V	420.0 Hz	67.10 V	67.56 V	67.90 V	PASS
AC	135 V	135.0 V	420.0 Hz	134.60 V	135.03 V	135.40 V	PASS

. Voltage	measureme	ent					
Accura	acy : For 45	Hz to 65 Hz	and DC: $\pm(0.$	5 % of reading + '	*0.3 V/0.6 V)		
	For all	other freque	encies: ±(0.7 %	% of reading + *0.9	9 V/1.8 V) *(135 V Range/ 27	0 V Range
Mode	Range	Standard	Frequency	Lower limit	Measurement	Upper limit	Status
AC	135 V	13.50 V	55.0 Hz	13.2 V	13.5 V	13.8 V	PASS
AC	135 V	67.50 V	55.0 Hz	66.9 V	67.5 ∨	68.1 V	PASS
AC	135 V	135.00 V	55.0 Hz	134.1 V	135.0 ∨	135.9 V	PASS
AC	135 V	13.50 V	420.0 Hz	12.6 V	13.5 V	14.4 V	PASS
AC	135 V	67.50 V	420.0 Hz	66.2 V	67.4 V	68.8 V	PASS
AC	135 V	135.00 V	420.0 Hz	133.2 V	134.8 V	136.8 V	PASS


Power Supply Calibration

5. Current	measureme	ent					
Accura	acy: For 45	Hz to 65 Hz	and DC: $\pm(0.$	5 % of reading +	*0.04 A/0.02 A)		
	For all	other freque	encies: ±(0.7 %	of reading + *0.	08 A/0.04 A) *(135 V Range/ 27	0 V Range)
Mode	Range	Standard	Frequency	Lower limit	Measurement	Upper limit	Status
AC	135 V	0.500 A	55.0 Hz	0.458 A	0.499 A	0.542 A	PASS
AC	135 V	5.000 A	55.0 Hz	4.935 A	4.987 A	5.065 A	PASS
AC	135 V	10.000 A	55.0 Hz	9.910 A	9.974 A	10.090 A	PASS
AC	135 V	0.500 A	420.0 Hz	0.417 A	0.498 A	0.583 A	PASS
AC	135 V	5.000 A	420.0 Hz	4.885 A	4.976 A	5.115 A	PASS
AC	135 V	10.000 A	420.0 Hz	9.850 A	9.961 A	10.150 A	PASS

							2.52	
6. Power measurement			nt					
	Accur			eading + 1.0 V				
		For D	C: ±(2 % of r	eading + 1.0 V	v + *0.04 w / 0.02	(W) *(*(135 V Range/ 270 V Range)	
	Mode	Range	Standard	Current	Lower limit	Measurement	Upper limit	Status
	Frequency setting : <u>45Hz (135V) , 65Hz (270V)</u>							
	AC	135 V	250.00 W	5.00 A	244.0 W	249.3 W	256.0 W	PASS
	AC	135 V	1000.00 W	10.00 A	979.0 W	997.0 W	1021 W	PASS
	AC	270 V	62.50 W	1.25 A	60.3 W	62.5 W	64.7 W	PASS
	AC	270 V	1000.00 W	5.00 A	979.0 W	997.6 W	1021 W	PASS

Variac vs. Keysight 6802A

- Power calculation and current measurement repeatability limited by current transducer
- Once Keysight 6802A is used for data acquisition, power and current measurement accuracy will improve

VFP 3 Demonstration Test

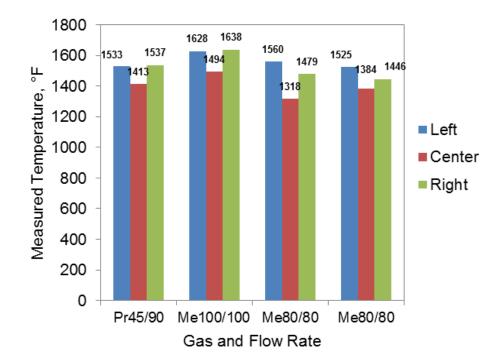
Propane vs Methane

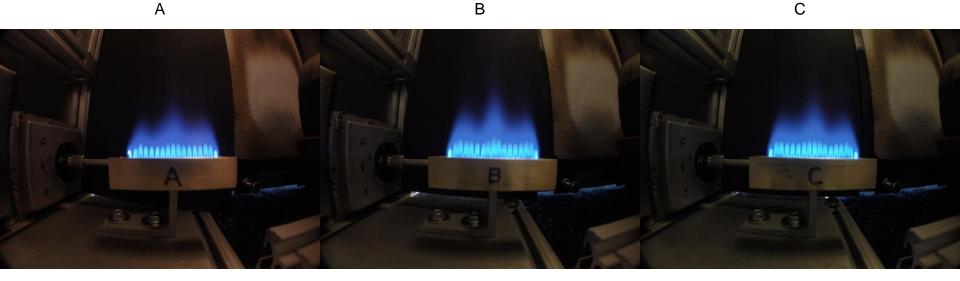
- It was requested to determine if methane could be used instead of propane
- 3 K-type exposed junction thermocouples used to quantify flame temperature
- Ceramic fiberboard used behind thermocouples to simulate test sample impingement
- TCs mounted 1" above burner face

Flame Profile Comparison

Propane 45/90

Methane 80/80


Methane 100/100


Propane vs Methane

- Initial test results indicate that similar temperatures and profiles can be achieved by increasing the flow rate when using methane
- Can not be certain that both gases are equivalent until burn tests are performed with both gases on the same materials

New Ribbon Burners

- Recently received 3 new ribbon burners
- Will loan one to Boeing, one to Airbus for installation in their current VFP 2 machines



Summary

- Continue development
 and testing of VFP 3
 - Work with equipment manufacturers to build commercial versions
 - Develop detailed drawings for VFP 3
 - Comparison testing with commercial versions once complete

- Develop better sample holding methods for panels, wires, and ducts
- Standardize test method
 procedure
- Find materials for comparative testing with new machines

Contact: Robert I. Ochs Fire Safety Branch William J. Hughes Technical Center ANG-E212; Bldg 287 Atlantic City, NJ 08405 T 609 485 4651 E robert.ochs@faa.gov

