

HR2 Development Model and Plan

Presented by: Brian E. Johnson, The Boeing Company March 2017 FTWG

Introduction

- HR2 Goal: Define a robust method to determine peak and total heat release that improves repeatability and reproducibility when compared with OSU.
- Prototype development <u>presentation</u> by Mike Burns at the October Triennial indicates recent apparatus and procedural changes made to reduce variation.

Recommendations

- Adopt the Technical Readiness Level (TRL) framework & establish gate criteria to assess development progress and ensure technical maturity
- Repeat DOE phase 1 using tightened air and methane flows
- Focus 2017 activity on moving HR2 from TRL 4 to TRL 5

Developmental Project Technical Readiness

Flammability Test Method/Equipment TRLs (Derived from NASA TRL)

MATURITY	TRL 1	Basic principles/concept of test equipment and procedure defined.				
LEVEL	TRL 2	Test method concept formulated and defined by draft standards.				
Discovery		Analytical and experimental critical function and/or characteristic proof-				
	TRL 3	of concept (e.g. by modifying old/existing equipment)				
↓		New prototype equipment validation in laboratory environment				
Feasibility	TRL 4	(robustness)				
		Updated prototype equipment validation in relevant production				
	TRL 5	environment (repeatability). Documented test guidance framework.				
Practicality	TRL 6	Multiple prototypes validation in relevant environment (reproducibility)				
		Finalized prototype equipment demonstation on range of production				
	TRL 7	configurations. Documented test guidance defined.				
Applicability		Final test equipment drawigns released, equipment built to the				
1		standards, and "qualified" through test and demonstration. Documented				
	TRL 8	test guidance finalized.				
	TRL 9	Multiple production units verified by successful round robin testing.				
Production Readiness		*Originally presented by M. Anglin 10/2014				

HR2 Development TRLs & Gates

TRL 4 - *Robustness* - apparatus, calibration method, equipment, procedures. Evaluate calibration factor variation using methane only / no coupons.

→ Gate 4 / Enter **TRL 5**: Calibration factor variation (< 5%)

TRL 5 - *Repeatability* - variation in measurements taken on the same item under the same conditions. Homogenous coupon tested multiple times using one unit.

➡ Gate 5 / Enter TRL 6: Test result variation (< X%)*</p>

TRL 6 - *Reproducibility* - variation in measurements taken on the same items under the same conditions using different machines.

➡ Gate 6 / Enter TRL 7: Test result variation (< X%)*</p>

TRL 7 - *Range* - demonstrated ability to test a range of coupon materials and configurations. Establish pass/fail criteria for HR2 total and peak heat release.

Gate 7 / Enter **TRL 8**: Results over a range of sample types that are consistent with OSU empirical results*

*Open to discussion in the Task Group.

Situation

- HR2 is currently at TRL 4 Robustness
- Marlin engineering prototype in use at the FAA Tech Center
- Deatak machine coming on line
- Phase 1 DOE produced high calibration factor variation (~6%)

Parameter	DESCRIPTION	Min.	Avg.	Max.
System Air Flow rates	SCFM	19	20	21
Heat Flux (W/cm ²)	Center	3.60	3.65	3.70
Linner Dilet	Air (SLPM)	0.98	1.0	1.2
Upper Pilot	Methane (SLPM)	1.3	1.5	1.7

- Changes recommended in the October triennial to decrease variation
 - Tighter control of air and methane flow
 - Use of a Mass Flow Controller to control inlet flows
 - Changing calibration method from Step to Ramp

TRL 4 to TRL 5

- Incorporate recent updates and characterize variation without coupons
- Repeat phase one DOE testing tighter flows, new calibration, and MFC's
 - Determine calibration factor variation with flows at nominal
 - Determine calibration factor variation over range of flows conditions
- Generate data and assess calibration factor variation (5% limit)
- If acceptable, move forward to coupon testing (TRL 5)
 - Agree on standard panel configuration and variation criteria
 - Calibrate and test at nominal new parameter values
 - Minimize all sources of variation possible
 - Test as many coupons as possible
- If unacceptable, assess additional sources of variation

Target

TRL 5 - Repeatability - Entry by the end of 2017

- Define standard coupon material
 - Minimize variation
 - Homogenous, minimal production steps
- Define repeatability criteria and threshold
- Conduct testing and analysis
- TRL 6 Reproducibility 2018
 - Requires additional instruments to be on line
 - Define target number of machines, samples to achieve
 - Define reproducibility variation criteria

Schedule

- Finalize ramp calibration method (March 2017)
- Repeat Phase 1 with tighter flows, new calibration, and MFC's (April 2017)
- Present results and recommendation at June meeting (June 2017)
 - Ability to move to TRL 5 or additional steps required within TRL 4
- Determine standard panel composition and sourcing (July 2017)
- Propose panel test conditions and repeatability targets (September 2017)
 - Establish gate criteria to move into TRL 6
- Kickoff standard panel testing (October 2017)
- Present standard panel test results at December meeting (December 2017)
- Solidify plan for additional HR2 use for next phase Reproducibility

Summary

 HR2 Goal: Define a robust method to determine peak and total heat release that improves repeatability and reproducibility when compared with OSU.

Recommendations

- Adopt the Technical Readiness Level (TRL) framework & establish gate criteria to assess development progress and ensure technical maturity
- Repeat DOE phase 1 using tightened air and methane flows
- Focus 2017 activity on moving HR2 from TRL 4 to TRL 5

