International Aircraft Materials Fire Test Working Group Meeting

Task Group Session on Revised Cargo Liner Test

Presented to: International Aircraft Materials Fire Test Working Group

By: Tim Salter, FAA Technical Center Date: March 6-7, 2013, Renton, WA

Federal Aviation Administration

Previous Meeting Items

- Sonic settings using stator and turbulator
- Overview of flame retention head
- Cargo sonic burner round robin
- Alternative methods of sonic burner plumbing for air supply
 - Lowering overall height of burner
- Thermocouple data drift and calibration
 - To be discussed further during seat cushion oil burner presentation

Summary for this Meeting

- Update regarding alternate method of burner air supply plumbing
- Information regarding flame retention head
- Initial data results from testing with flame retention head
- Sonic cargo burner round robin update

Main Objective: Transition from Park Burner to Sonic Burner

Baselining of Park Burner

- 1. Generate calibration temperature results with FAATC Park burner apparatus
 - Results will be used to calibrate Sonic burner apparatus

- 2. Generate test results with FAATC Park burner apparatus
 - Results will be used to correlate sonic burner (B/T times and temp vs. time plots)
 - 3 styles of liner and 1 PAN felt have been tested
 - 2 additional materials also tested
 - 6 materials total being used for testing and comparison

- FAA's sonic cargo burner uses hard lines for fuel and air supply plumbing
- Current FAA burner arrangement limits test
 chamber construction/design due to burner height
 - Difficult to see back-side of sample in some test chambers
- FAA tested soft air/fuel supply lines which had potential to allow more flexibility with regard to burner construction

- Distance from test chamber floor to exit plane of burner cone
 - FAA Park burner height: 54"
 - FAA sonic burner height: 53"
- FAA sonic burner cone exit plane is currently 1" lower than FAA Park burner cone exit plane
 - Sonic burner was constructed with the intent that it be no taller than the Park burner
 - Consider possible effects of air supply plumbing
 - Bends/elbows have shown to impact burner performance

Task Group Session on Cargo Liner Test IAMFTWG, March 6-7, 2013, Renton, WA

- Industry has suggested relocating muffler, elbow, and sonic choke to reduce the height of the burner cone exit plane and sample rig
- FAA burner air supply plumbing shown in picture

- Muffler packed with reticulated foam helps to even out the flow of the air after elbow
- Change in airflow direction due to elbow has shown to impact burner performance without use of muffler/foam
- Distance from top of muffler to test chamber floor is currently 17"

- Utilizing a ³/₄" ID rubber hose and appropriate pipe fittings, the height of the burner may be lowered 8"
- The height of the burner will depend upon the NPT fittings/adapters used, and also the bend radius of the flexible air supply hose
- Use of a swept elbow also a possibility

- Two different configurations tested
 - Flexible rubber air hose
 - Rearrange placement of muffler with swept elbow

Task Group Session on Cargo Liner Test IAMFTWG, March 6-7, 2013, Renton, WA

- Burner flame extremely sensitive to direction in which rubber hose enters the back of the burner draft tube
- Slight movements of the hose had a significant impact on temperatures measured during calibration

- Replacing muffler and hard lines resulted in highly skewed flame temperatures during calibrations
- Not viable options using stator/turbulator
- Further testing planned when running flame retention head

•Hose entrance @ 90 degrees from burner tube

	TC 1	TC 2	TC 3	TC 4	TC 5	TC 6	TC 7	AVG
Cal 1	1194	1372	1527	1623	1647	1633	1605	1514
Cal 2	1150	1308	1458	1572	1622	1631	1637	1482
Cal 3	1137	1288	1438	1558	1609	1621	1633	1469

•Hose entrance @ 180 degrees from burner tube

	TC 1	TC 2	TC 3	TC 4	TC 5	TC 6	TC 7	AVG
Cal 1	1565	1590	1567	1562	1495	1356	1214	1479
Cal 2	1577	1618	1601	1594	1530	1398	1257	1511
Cal 3	1585	1618	1600	1598	1534	1384	1226	1506

•Swept elbow entrance @ 180 degrees from burner tube

	TC 1	TC 2	TC 3	TC 4	TC 5	TC 6	TC 7	AVG
Cal 1	1620	1627	1592	1519	1332	1168	1096	1422
Cal 2	1640	1659	1640	1596	1409	1241	1196	1483
Cal 3	1638	1652	1635	1597	1402	1226	1156	1472

Back Panel Side of Sample Rig

- Eliminates the need for a stator and turbulator
- Fits on end of burner draft tube with minimal modification
- Parts purchased from local heating supply store for less than \$50
- Initial testing showed potential for improved test result repeatability as compared to stator and turbulator configuration

•Temperatures measured 4 inches above backside of cargo liner material

- Flame retention head (FRH) shows resistance to changes in air pressure which should lead to improved test result repeatability
- Burner would likely be run in the 30-40 psi range
- Currently testing different air pressures, fuel nozzle spray patterns, and internal burning settings

Cargo Sonic Burner Round Robin

- Round robin for sonic cargo burner currently underway
- 3 labs currently participating
 - FAA Technical Center lab included
- FAA has supplied each lab with a fuel nozzle, burner cone, and test samples
- 3 types of samples provided
 - Heavy, woven fiberglass/epoxy liner (5 pieces)
 - Light, semi-rigid liner (3 pieces)
 - Polyacrylonitrile (PAN) felt (5 pieces)

Cargo Sonic Burner Round Robin

- Different sample materials will burn through at different rates, or show different temperature profiles measured 4 inches from the back-side of the sample
- Results should further substantiate sonic burner settings developed as a replacement for the Park burner
- Currently looking for more labs with cargo sonic burners that are interested in participating in round robin

Cargo Sonic Burner Settings

- Sonic burner settings for use as Park burner replacement using stator and turbulator
 - All depths are measured from the exit plane of the turbulator to the nozzle tip or front stator face
 - Recommended Nozzle: Delevan 2.0 gal/hr 80° type B
 - Nozzle Depth: 9/16"
 - Stator Depth: 3 5/16"
 - Stator Angle: 270° (centerline from vertical)
 - Turbulator: Notch will face bottom of tube (180°)
 - Air Pressure: 47.5 psi
 - Air Temperature: 40-60°F
 - Fuel Temperature: 32-52°F

Sonic Cargo Burner Round Robin

- Initial test results show a significant difference in temperatures measured above the backside of cargo liner materials
- Burner at all labs appear to be setup identical
- Temperature differences may be due to size of lab test area, ventilation, or other reasons not a result of the burner itself

Average Temperatures Measured 4 Inches above Backside of Cargo Liner Material

Cargo Sonic Burner Round Robin

- Measured time to burn through for Textech felt material was relatively consistent and similar among labs
- Percent standard deviation is below 10% for all labs

	Lab A	Lab B	Lab C
	Time (sec)	Time (sec)	Time (sec)
	393	334	387
	351	363	353
	386	380	342
	378	403	
	342	408	
avg	370	378	361
stdev	22.33	30.37	23.46
%stdev	6.03	8.04	6.50

Planned Activities

- Research effects of test area size as well as type of air ventilation
- Continue FRH development and testing
- Complete current round robin using stator and turbulator configuration
- Plan for future round robin using FRH
- Conduct testing of various cargo design features to support development of advisory material

Questions?

