FLAMMABILITY STANDARDIZATION TASK GROUP UPDATE: Adhesives

Presented to: *Materials Fire Test Working Group*

Natallia Safronava, SRA International Richard E. Lyon, FAA

March 3, 2010, Seattle, WA

Federal Aviation Administration

Objectives

Determine correlation between Microscale Combustion Calorimetry (MCC) properties and FAR flammability tests for stand-alone adhesives.

- FSTG members provide cured adhesive specimens and FAR vertical Bunsen burner (VBB) test reults:
 - 12 Second VBB
 - 60 Second VBB
- Conduct microscale combustion calorimeter (MCC) testing ASTM D 7309 at FAA on adhesives submitted by FSTG members.
- Correlate MCC flammability properties with FAR flammability (12s and 60s VBB) of adhesives.

Materials

3 companies participated in the study: Magnolia 3M Gulfstream

- **27 samples** total were received for testing. 3 specimens with the same name were received from different suppliers.
- **25 samples** came with results for 12s and 60s Vertical burn test from the supplying companies.

FAA Microscale Combustion Calorimeter ASTM D 7309

MCC Reproduces Elements of Flaming Combustion in Controlled Test

5 Thermal Combustion Properties Measured in MCC Test

		12s	60s	T _{onset}	T _{max}	HR	H _c	HRC	R	Char
N	ADHESIVE APPLICATION	VBB	VBB	C	C	kJ/g	kJ/g _{gss}	J/g-K		%
							_			
1	Low density filler	Р	Р	313	375	9	12.8	135	44	30
2	5 min epoxy	Р	Р	307	348	10.3	14.7	335	52	30
3	10 min epoxy	Р	Р	303	347	10.5	14.8	263	53	29
4	Adhesive	Р	Р	355	400	13.6	22.7	195	68	40
5	Epoxy Adhesive	Р	Р	300	336	12.5	18.9	235	69	34
6	Adhesive	Р	Р	300	337	14.2	19.8	490	72	29
7	Adhesive bonding	Р	Р	280	327	13.8	20	295	78	31
8	Adhesive	Р	Р	280	335	14.1	20.1	365	79	30
9	Epoxy Core Fill	Р	Р	311	375	17.6	23.5	220	80	25
10	Epoxy Core Fill	Р	Р	285	340	13.3	21.1	285	81	37
11	Edge fill	Р	Р	270	300	15.8	20.8	228	84	24
12	Epoxy Insert Adhesive	Р	F	300	345	16.4	23.8	245	86	31
13	Epoxy Adhesive	Р	F	325	345	19.8	26.1	335	87	24
14	Low density filler	Р	Р	285	364	16.2	23.1	205	88	30
15	Edge fill	Р	Р	280	445	16.4	23.4	185	88	30
16	Edge fill, adhesive	Р	Р	313	382	7	10	80	88	30
17	Insert adhesive	F	F	320	379	21.2	26.2	320	88	19
18	Panel inert adhesive	F	F	340	390	25.0	28.1	395	89	11
19	Low density filler	F	F	280	313	16.2	23.1	181	91	30
20	Adhesive	Р	F	285	342	20	24.1	280	92	17
21	Edge fill	F	F	275	311	18.0	23.1	310	92	22
22	Adhesive	F	F	325	378	25.9	27.8	425	93	7
23	Adhesive	F	F	315	379	26.0	28.2	370	97	8
24	Epoxy Edge Fill	Р	Р	235	311	13.8	20.6	200	98	33
25	Panel & Insert adhesive	F	F	300	394	22	28.9	200	101	24

Reproducibility of HRR for Samples from Different Sources Is Excellent

VBB rating

Heat Release Rate (HRR) of Combustible Solids

Flame Spread Criterion for Combustible Solids

- Assume critical heat release for flame spread (burning), HRR* ≈ 200 kW/m² in radiant panel test.
 - Assume heat required to generate gaseous fuel from solid is

$$H_g = C (T_{onset} - T_0) + h_{vaporization}$$
$$\approx 2C (T_{onset} - T_0)$$

 T_{onset} = thermal degradation temp. T_0 = room temp.

C = heat capacity

• Condition for flame spread is:

$$\frac{H_c}{T_{onset} - T_0} \geq \frac{2CHRR*}{(q_{ext}'' + q_{flame}'' - q_{rerad}'')}$$

Quantifying MCC Properties as Predictors of Pass/Fail VBB Results

N_{fail} = Number of failing results

$$N = N_{pass} + N_{fail} = 25$$

 N_{FP} = Number of False Positives

= Number failing results within range of passing results for ranked data

False Positive Rate (%) =
$$\frac{N_{FP}}{N - N_{FP}} \times 100$$

MCC Criteria for Radiant Panel Test of A/C Electrical Wires

2-D Criterion Not as Good for VBB of Adhesives

VBB versus Heat Release Capacity

Combustion Ratio, J/g-K

VBB versus Pyrolysis Residue (Char Yield)

Pyrolysis Residue (Char Yield), %

Heat of Combustion of Volatiles H_c (kJ/g-gas)

VBB versus Total Heat Release

Total Heat Release (kJ/g-sample)

Conclusions

- Microscale Combustion Calorimeter properties that are highly correlated (< 10% false positive) with 12s and 60s VBB results are:</p>
 - Total Heat Release of Sample (HR)
 - Heat of Combustion of Fuel Gases (H_c)

More conservative choice of HR or H_c will eliminate false positives.

- A limited number of samples (25 total, 22 different) were tested in this study.
- Sample size was not controlled in the VBB test and is a source of variability in the P/F results.

