HEAT FLUX CALIBRATION STUDY 2010 March Materials Meeting Boeing Facility - Renton, WA

Materials Working Group Michael Burns, FAA Tech Center March 3rd & 4th, 2010

AGENDA

- FAA Tech. Center Calibration Results (NIST Cal.)
- Problems Getting A Repeatable Calibration Factor
- Solution To Problem
- New Method Data
- Calibration Results
- Radiant Panel Validation Study

Heat Flux Study – 4 NIST Calibrated Gages

<u>Manufacturer</u>	<u>Type</u>	<u>Range (BTU)</u>	<u>S/N</u>
VATELL	GARDON	0-5	V8174
VATELL	GARDON	0-5	V8175
MEDTHERM	GARDON	0-5	M160781
MEDTHERM	GARDON	0-20	M160782

Heat Flux Sensitivity Study

- Once Gages Were Returned To Tech. Center A Calibration Was Conducted Using "FAA" Gage As Standard
- The Transfer Method Was Made Using A Heated Graphite Plate

Approx. % Difference From NIST Cal. Factor

Vatell Gages

Both FAA and Manufacturer Calibration Factors Were About 5% Lower

Medtherm Gages

Both FAA and Manufacturer Calibration Factors Were About 2% Higher

It was discovered that when a calibration was conducted, and the sensors swapped and repeated, there was about an 8% difference in the FAA calculated calibration factor

Tried the following:

- Replaced Graphite Plate
- Replaced FAA gage with a newly calibrated NIST gage (V8175)
- Switched Calorimeter holders
- Rotated Graphite Plate
- Covered everything (Stagnant air) nothing seems to solve this 8% error

<u>Then</u>

- Increased gap from 1/8" to 1/4" began to see improvement in error
- Increased gap from 1/4" to 1/2"
- decreased gap from 1/2" to 3/8" had repeatability with less than 2% error
- •Avg. left/right calibration values and was within 0.5% of the NIST Cal. Factor (using 2 NIST Gages)

Once Repeatability Problem Was Solved Calibration Was Repeated

•FAA Gage As Standard With It's New Calibration Factor

•New Method Of Swapping Sensor Locations

•Using Average Value (With Increased Gap Distance)

NOTE: FAA Gage is a 0-5 BTU Vatell

Approx. % Difference From NIST Cal. Factor

Vatell Gages

FAA Calibration Factor Improved to < 2% (From 5%)

Manufacturer Calibration Factor Approx. 5% Lower

Medtherm Gages

FAA Calibration Factor Grew to Approx. 16% Higher

Manufacturer Calibration Factor Approx. 2% Higher

Approx. % Difference Between Calculated FAA Cal. Factor & <u>NIST Cal. Factor</u> When NIST Cal. Factor Is Used For The Standard

STD	V8174	V8175	M160781	M160782
V8174	N/A	0%	16%	19%
V8175	<1%	N/A	15%	18%
M160781	-13%	-13%	N/A	4%
M160782	-15%	-16%	-3%	N/A

Approx. % Difference Between Calculated FAA Cal. Factor & <u>Man. Cal. Factor</u> When NIST Cal. Factor Is Used For The Standard

STD	V8174	V8175	M160781	M160782
V8174	N/A	4%	13%	21%
V8175	8%	N/A	12%	19%
M160781	-7%	-10%	N/A	5%
M160782	-10%	-13%	-5%	N/A

Radiant Panel Heat Flux Validation Test

- Comparison of a Vatell and Medtherm NIST calibrated gage (of the same range) in Radiant Panel Tester
- The Radian Panel Heat Flux was set to 1.5 BTU/ft^{2*}sec using the Vatell gage with the NIST calibration factor installed in the software
- The gage was swapped with the Medtherm and it's NIST calibration factor entered into the software

	MV	Heat Flux	NIST Cal.	% Delta
Vatell	3.49	1.50	0.4302	
Medtherm	2.39	1.26	0.5269	-16%

- A Medtherm Gage Will Be Calibrated Using A NIST Calibrated Medtherm Gage Of The Same Range
- The Radiant Panel Test Will Be Repeated To Get A Baseline For This Sensor
- The Medtherm Gage Will Be Stripped Of It's Paint And The Entire Face Will Be Coated With 3m Black Velvet Paint And Recalibrated
- Test Will Be Repeated
- Look Into Possible Use Of Alternative Type (Schmidt-Boelter [*Thermopile*]) Heat Flux Gage

