Vertical Flame Propagation (VFP)

Ground Rules for Webinars and Zoom Meetings

Webinar:

Please use the Q & A button to ask questions. We will try to address them as they come in, but may answer at the end

Task Group Zoom:

Everyone PLEASE go on mute

Use raised hand feature (under participants button) to ask a question A panelist will call on participant to ask their question, as time permits Once question has been answered, click raised hand to "un-raise"

Vertical Flame Propagation (VFP)

Objective

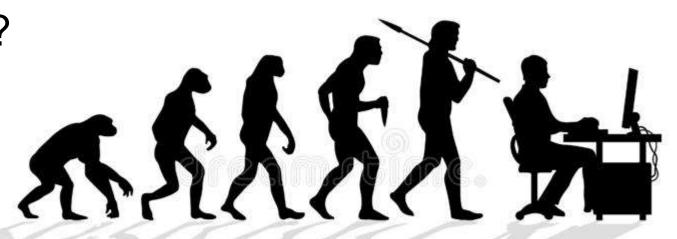
Proposed new test method for non-metallic, extensively used materials

located in *inaccessible areas*, i.e.:

- Composite skin, structure, and sub-components
- Wires (insulations/jackets/sleeving)
- Duct materials
- Other, tbd

What is it?

• A way of evaluating the performance of a material against a realistic fire threat using a line burner and radiant heat source.



Topics

Where were we?

Where are we?

Are we there yet?

Where were we?

Varying diameters of ducts and their results

Flat vs round

Varying thicknesses

- Wire background
- Heater uniformity

Different manufacturers = varying heat output per watt Supply voltage

Heat flux

Could HFG's resolve design and power differences

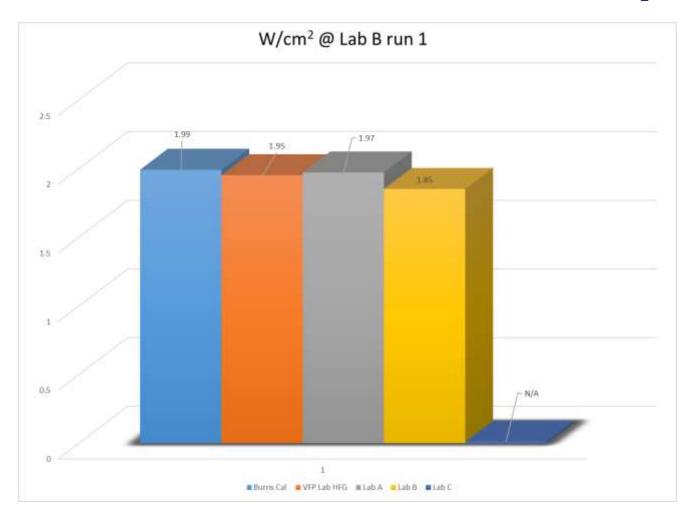
Where are we?

Interlab study of HFG's

- 4 labs, 5 gauges
- Set power to host gauge (reference)
- Compared all other gauges (working)

Goals

- Determine the variability among HFG's
- Use this deviation to evaluate HFG reliability


HFG Comparisons	Δ w/cm ²	max Δ w/cm ²
VFP Lab vs Burns Cal	-0.11	0.11
Lab A vs Burns Cal	-0.1	
Lab B vs Burns Cal		
Lab C vs Burns Cal		

• St dev: 0.061

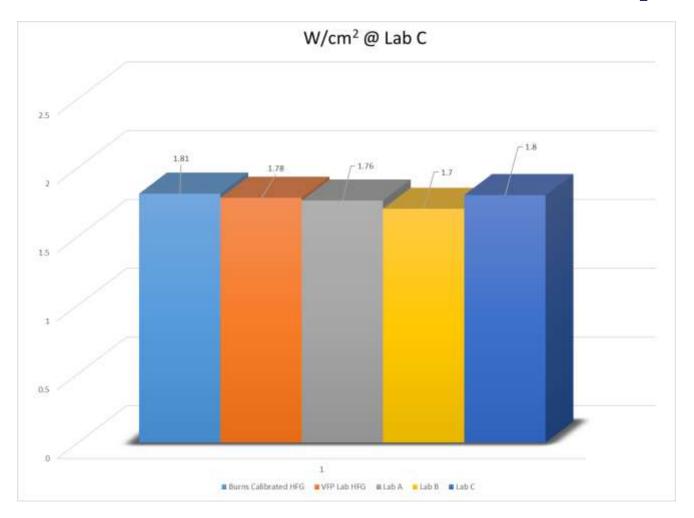
• % st dev: 2.57

 Set to power, not to heat flux. That update had not yet been installed to unit*

HFG Comparisons	Δ w/cm ²	max Δ w/cm ²
VFP Lab vs Burns Cal	-0.04	
Lab A vs Burns Cal	-0.02	
Lab B vs Burns Cal	-0.14	0.14
Lab C vs Burns Cal		

• St dev: 0.057

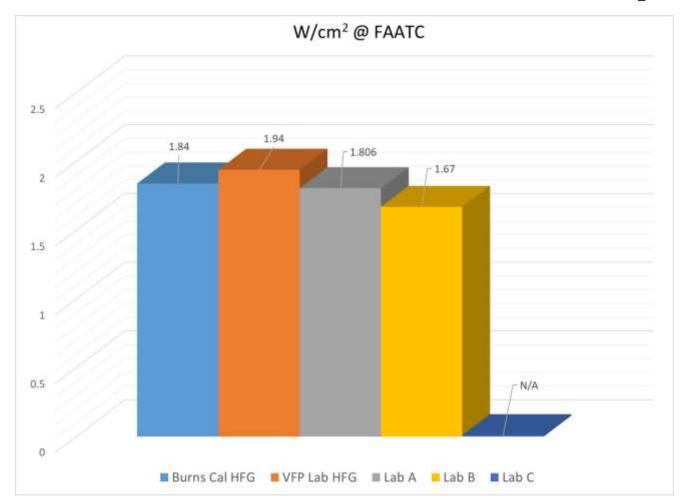
• % st dev: 2.937



HFG Comparisons	Δ w/cm ²	max Δ w/cm ²
VFP Lab vs Burns Cal	-0.04	
Lab A vs Burns Cal	-0.02	
Lab B vs Burns Cal	-0.09	-0.09
Lab C vs Burns Cal		

• St dev: 0.039

• % st dev: 1.98


HFG Comparisons	Δ w/cm ²	max Δ w/cm ²
VFP Lab vs Burns Cal	-0.03	
Lab A vs Burns Cal	-0.05	
Lab B vs Burns Cal	-0.11	0.11
Lab C vs Burns Cal	-0.01	

• St dev: 0.044

• % st dev: 2.463

HFG Comparisons	Δ w/cm ²	max Δ w/cm ²
VFP Lab vs Burns Cal	0.1	
Lab A vs Burns Cal	-0.034	
Lab B vs Burns Cal	-0.17	0.17
Lab C vs Burns Cal		

• St dev: 0.112

• % st dev: 2.566

Conclusions

1. Did we determine the variability of HFG's?

- Most gauges varied 0.03-0.1 w/cm²
- One gauge varied .11-.17 w/cm²

2. Will HFG be reliable going forward?

- Determine effect on burn length of these variances
- Visit HFG manufacturer to discuss calibrations

Baseline Material Assessment

Avg Burn Length	Std Dev.	% Std Dev.
2.28"	0.23"	10.12

- Series of tests conducted on an aircraft grade CFRP, 1/8" thick
- 10 tests
- Strict 1.8 watts/cm²
- Room temp 71°F

Experiment Set up

(-) Low Level	(+) High Level									
1.7	1.9									
65	75									
Heat Flux	Room Temp	Randomize	Actual Heat Flux	Burn Length	After Flame	Room Temp	% RH	Back Wall Thermocouple Pre Test	Watts Before Test	Watts After Test
1.7	75	0.010730819								
1.7	65	0.161017441								
1.9	65	0.244162765								
1.7	75	0.363605551								
1.9	75	0.533051687								
1.9	65	0.545988063								
1.7	65	0.659694949								
1.7	65	0.663592607								
1.9	65	0.734122903								
1.9	75	0.804076379				_				
1.9	75	0.812019225								
1.7	75	0.866090654								
	1.7 65 Heat Flux 1.7 1.7 1.9 1.7 1.9 1.7 1.7 1.9	1.7 1.9 65 75 Heat Flux Room Temp 1.7 75 1.7 65 1.9 65 1.9 75 1.9 65 1.7 65 1.9 65 1.7 65 1.9 65 1.7 65 1.9 75	Heat Flux Room Temp Randomize 1.7 75 0.010730819 1.7 65 0.161017441 1.9 65 0.244162765 1.7 75 0.363605551 1.9 75 0.533051687 1.9 65 0.545988063 1.7 65 0.659694949 1.7 65 0.734122903 1.9 75 0.804076379 1.9 75 0.812019225	1.7 1.9 65 75 Heat Flux Room Temp Randomize Actual Heat Flux 1.7 75 0.010730819 1.7 65 0.161017441 1.9 65 0.244162765 1.7 75 0.363605551 1.9 75 0.533051687 1.9 65 0.545988063 1.7 65 0.663592607 1.9 65 0.734122903 1.9 75 0.804076379 1.9 75 0.812019225	1.7 1.9 65 75 Heat Flux Room Temp Randomize Actual Heat Flux Burn Length 1.7 75 0.010730819 1.7 65 0.161017441 1.9 65 0.244162765 1.7 75 0.363605551 1.9 75 0.533051687 1.9 65 0.545988063 1.7 65 0.663592607 1.9 65 0.734122903 1.9 75 0.804076379 1.9 75 0.812019225	1.7 1.9 65 75 Heat Flux Room Temp Randomize Actual Heat Flux Burn Length After Flame 1.7 75 0.010730819	1.7	1.7	1.7	1.7

Effect on Burn Length

Experiment #1: Heat Flux (+0.2), Chamber Temp

Variable	Low	High	Avg. Effect on BL
Heat Flux (w/cm ²)	1.6	2.0	0.96"
Chamber Temp (°C)	50	70	0.07"

Baseline St Dev 0.23"

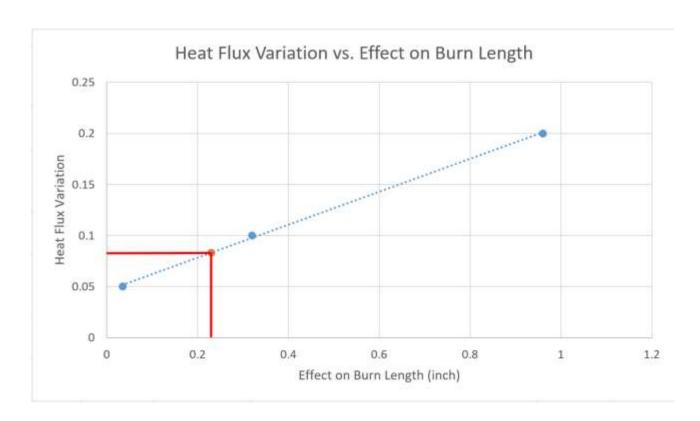
Effect on Burn Length

Experiment #2: Heat Flux (+0.1), Room Temp

Variable	Low	High	Avg. Effect on BL
Heat Flux (w/cm2)	1.7	1.9	0.32"
Room Temp (°C)	18.3	23.9	0.42"

Baseline St Dev 0.23"

Effect on Burn Length


Experiment #3: Heat Flux (+0.05), Room Temp

Variable	Low	High	Avg. Effect on BL
Heat Flux (w/cm2)	1.75	1.85	0.04"
Room Temp (°C)	19.4	22.8	0.002"

Baseline St Dev 0.23"

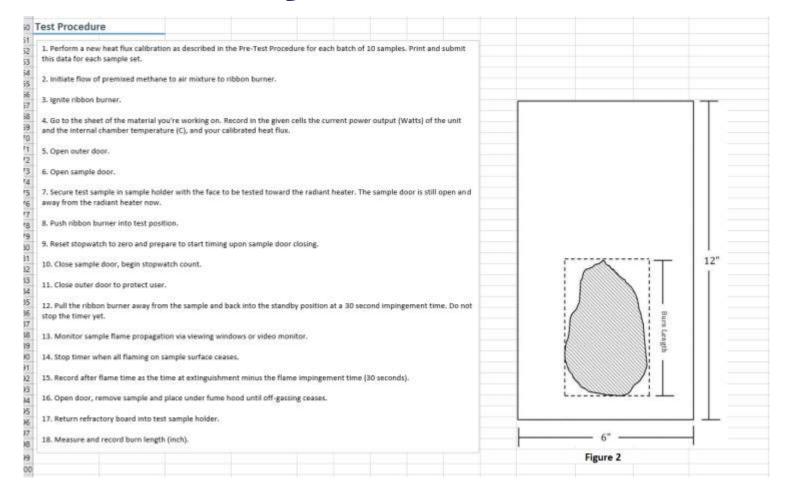
Conclusion

- Relationship between heat flux variation and the effect on burnlength
- 3 ranges shown
- Max heat flux variation < stdv of this material

Are we there yet?

Not. Quite. Yet.

- The task group in March discussed and agreed upon a heat flux calibration tolerance of +/-0.05 w/cm2
- Also agreed to install a t/c to monitor inlet air
- Establish new air flow measurement using hood adapters
- Still need to open a dialog with HFG manufacturers to discuss calibrations
- Start Interlab Composite Testing
- Simultaneously continue ducting materials & wires



Interlab Study (Round Robin I)

Please perform this Pre-Test Procedure before continuing or	nto the next sections.				
Pre -Test Procedure	Pre-Test Information				
Place refractory board in sample holder to retain heat in the VFP chamber.		6 - 11			
200 - 100 -	100000	Mass Flow Controllers			
2. Confirm the distance from the heater coil to the inner vertical edge of the sample frame is 3 inches. Confirm the distance of		ture are your MFC's calibrated to?			
the ribbon burner face to the inner vertical edge of the sample frame is 1/2 inch.	Pressure (PSIA)				
	Temperature (K)				
3. Check your mass flow controller's calibration sheet. To what pressure and temperature are your mass flow controllers		4.7 PSI and 298 K, use these values:			
calibrated to? Please note these values in the box to the right. If they are calibrated to 14.7 PSIA and 25 ℃ (298 K) please use	Air (slpm)	3.6			
values 3.6 slpm air to 0.66 slpm methane for your air/fuel values. If they are not calibrated to 14.7 PSIA and 25°C use the	Methane (slpm)	0.66			
calculated values shown to the right. (Please enter the units in Kelvin and PSIA to calculate properly).	If your MFC are NOT calibrated to	14.7 PSI and 298 K, use these values			
 Refer to MFC calculation sheet in this Excel file for the full calculation if you're curious. 	Air (stpm)	#DIV/0!			
This was taken from the VFP presentation in October of 2018.	Methane (slpm)	#DIV/0!			
4. Turn on radiant heater. Set wattage to an approximate value that will acheive 1.8 W/cm^2. No heat flux gauge is used at					
this point, just an estimated wattage.					
5. Wait 1 hour for the chamber to stabilize.	Heat Flux				
	Final Heat Flux on a 5 minute Average				
6. Record air intake temperature, This value should be 70±3 degrees F. The temperature should be taken with a thermocouple					
placed XX inches below the VFP's air intake grate, centered. This image is shown in Figure 1 to the right.					
7. Place refractory board holding the heat flux gauge in the sample holder. The heat flux gauge is to be placed so that it is					
centered with the radiant heater. Record heat flux data until the value stabilizes to 1.8 Watts/cm2 +/- 0.05 for an average of 5	Evhauet	Air Speed			
minutes. Save this calibration and lock in the correlating wattage.					
	Lab Fan Exhaust Off	Lab Fan Exhaust On			
Remove heat flux gauge and replace with refractory board in the sample holder,	Ignitor and Furnace On	Ignitor and Furnace On			
9. Ignite the ribbon burner and move it into the test position.					
10. Place the anemometer cone on top of the VFP's exhaust. Attach the vane anemometer to this cone and measure the air					
speed exiting the VFP (OR ITS AIR FLOW VOLUME NOW?). Do this with your lab's exhaust fan off and again with the lab's fan					
on. Record these values in the table shown to the right. Return the ribbon burner to standby position.					
11. You may now continue to Test Procedure.					

Interlab Study

Interlab Study

1	Material A - 1/4 inch Thick									
2										
3		Internal Chambe	er Temperature							
4		Power of	Heater							
5		Heat	Flux							
6	Is the dista	ance of the ribbon burner f	ace to the inner vertical e	dge of the sample frame 1/2 inch?						
7	Is the dista	ance of the heater coil to th	e inner vertical edge of th	ne sample frame 3 inches?						
8	Sample	After Flame (sec)	Burn Length (inch)	Power of Heater Before Test (Watts)	Internal Chamber Temperature Before Test (C)					
9	A1									
10	A2									
11	A3									
12	A4									
13	A5									
14	A6									
15	A7									
16	A8									
17	A9									
18	A10									
19										
20										

Contact Info

Tina Emami

Fire Safety Branch
Bldg275, ANG-E212
William J. Hughes Technical Center
Atlantic City, NJ 08405
(609) 485-4277
Tina.Emami@faa.gov

Rick Whedbee

Fire Safety Branch
Bldg275, ANG-E212
William J. Hughes Technical Center
Atlantic City, NJ 08405
(609) 485-4610
Rick.Whedbee@faa.gov

Questions

