Relationship Between 3-D Printed Materials and Flammability

Presented to: International Aircraft Materials Fire

Test Forum

By: Steve Rehn Date: 6/11/2020

Introduction

- 3D printing introduces all new variables in material construction
- Variables include:
 - Printing orientation
 - Infill percentage
 - Raster angle
 - Layer thickness
 - Raster width

Test Plan

- Determine worst case scenario for each variable in flammability testing in order to simplify future testing
- Vary printing parameters in several different materials and sample thicknesses
- Test using vertical Bunsen Burner
- Analyze test results to determine how future testing can be simplified and reduced

Calculating Infill Percentage

- Infill percentage calculated from Insight program material estimate
- Create toolpath of single layer
- Delete outer contours to only calculate infill
- Divide material used by material used in solid sample to get infill %

Sparse: 0.100 in³ material

$$0.100/_{0.435} = 23.0\%$$

Solid: 0.435 in³ material

Print Infill Patterns

- Tested with Ultem Support (PES) and Ultem 9085 (PEI) materials
- Several infill patterns and percentages
- Tested infill by itself and with solid outer layers

Print Infill Patterns

Infill Only

- PES Material
- 0.060" sample thickness
- Every sample tested burned until chamber filled with smoke and put out fire

Varying Infill with Solid Outer Layers

- Tested 0.10" thickness
- 2 solid outer layers, rest is hollow infill
 - On 0.10", 2 solid layers, 6 infill, 2 solid layers
- Two materials Ultem Support (PES) and Ultem 9085 (PEI)
- 12-second vertical Bunsen burner for both materials, 60s VBB for Ultem 9085

 8 samples per infill pattern

- Good correlation between infill percentage and test results
- Less infill % causes more burning

Varying Infill – Ultem 9085 (PEI)

- Same layer configuration 2 solid outer layers, 6 inner infill layers (0.10 inch thickness)
 - 12-second test, 4 samples per infill pattern

- Same layer configuration 2 solid outer layers, 6 inner infill layers (0.10 inch thickness)
 - 60-second test, 5 samples per infill pattern

- Infill only 0.06 inch thickness
- Same tests as completed by Airbus
 - Have not reconciled infill % calculation yet

- Infill only, 0.06 inch thickness
 - 12-second test, 4 samples per infill pattern

- Infill only, 0.06 inch thickness
 - 60-second test, 5 samples per infill pattern

- Infill only, 0.20 inch thickness
 - 12-second test, 4 samples per infill pattern

- Infill only, 0.20 inch thickness
 - 60-second test, 5 samples per infill pattern

Infill only, 0.06 inch vs. 0.20 inch thickness

- Infill w/ solid outer layers, 0.10 inch vs. 0.25 inch thickness
 - 12-second VBB

Additive Manufacturing VBB AC

- Began writing advisory circular for vertical Bunsen burner testing of 3D printed materials
 - Details most severe case for each variable in order to reduce/simplify testing
 - For example, lower infill % is more severe than higher infill %, therefore testing lower infill substantiates higher infill.
 - Will have separate section for PEI-based materials
 - Can discuss further in task group meeting

Conclusion

- Less infill percentage is more severe case than more infill
- Agrees with Airbus test results using Ultem 9085
 - Have not made direct comparison yet because of infill percentage calculation
- Thinner samples is more severe than thicker
- Next parameter to test
 - Raster angle?
 - Raster width?

Questions?

Contact:

Steven Rehn
Federal Aviation Administration
William J. Hughes Technical Center
Fire Safety Branch, Bldg. 203
Atlantic City Int'l Airport, NJ 08405
(609) 485-5587
steven.rehn@faa.gov

Ground Rules for Webinars and Zoom Meetings

Zoom meeting Ground Rules:

Everyone PLEASE go on mute

Use raised hand feature (under participants button) to ask a question

A panelist will call on participant to ask their question, as time permits

Once question has been answered, click raised hand to "un-raise"