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Overview of Talk

• Microscale (10-6 kg) fire growth capacity (FGC) combines 

flame spread & burning rate to better compare materials.

• Increased accuracy, repeatability and reproducibility of 

FGC by accounting for baseline drift in MCC (ASTM Ballot 

Item).

• Method of calculating FGC from MCC data.

• FGC of 30 polymers and flammability correlations.

• Repeatability of FGC.



14 CFR 25 (FAA) Fire Tests
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Burning Model of Solids
• Tburn and Tign bound pyrolysis zone in fire

• Tb and Tp bound pyrolysis interval in MCC
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Fire Temperatures in Cone Calorimeter and MCC
(Hypothetical)

Tp Tb



Ignition Temperatures: MCC ≈ Cone
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Fire Temperatures in Cone Calorimeter and MCC
(Measured)



Fire Temperatures in Cone Calorimeter and MCC
(Measured)



Fire Growth at Bench-Scale is 2-D

RADIANT PANEL/HBB
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Fire Growth Capacity (FGC)

FGC
Symbol Fire ParameterTA Property
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Accurate FGC by Correcting for 

Baseline Drift in the MCC

Thermal expansion of the purge gas in the pyrolyzer

during the test has the effect of:

• Increasing the terminal flow rate (Methods A and B).

• Diluting O2 at the sensor (Method A).

This change in the zero-point value of the specific heat 

release rate, Q0 is described by the ideal gas law, with T

the sample/pyrolyzer temperature at Q(t)

MCC Baseline =
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At High Sensitivity Baseline Drift is Mainly Due

To O2 Sensor Fluctuations
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Correcting MCC Data for Baseline Drift

The specific heat release rate at

sample temperature T is:

Compute Baseline Coefficients, C1, C2

from 2 data points, (Q1,T1) and Q2,T2)
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Q∞ , Tp and Tb are TA properties in Fire Growth Capacity/FGC.
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14 CFR 25

Large Area
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FGC Discriminates Levels of Fire Performance 



FGC is Independent of Choice of Baseline

∆T = T2 – T1

Temperature Range of Baseline Fit, T2-T1 (°C)
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FGC is Independent of D7309 Version (2013/2019)

And Baseline Method (Linear/T-1)

Aircraft Phenolic

Resin



Conclusions

Ignition temperature (Tign) and burning temperature (Tburn) of 

components identified in MCC.

MCC data corrected for baseline drift to obtain accurate Tign, 

Tburn and total heat Q∞ of combustion for similarity 

determination.

Fire growth capacity (FGC) combines flame spread and 

burning rate in a single parameter and is useful for comparing 

flammability of polymers at micro (10-6 kg) scale.

Microscale (FGC) criteria for equivalent bench (kg) scale 

flammability of certified and substitute components has been 

demonstrated (Safronava).


