

HR2 Development - TRL 5 Update

Presented by: Brian Johnson, The Boeing Company

Prepared by: Yaw Agyei and Brian Johnson, both of The Boeing Company

June 2019 MFTF

OSU Test Method

14CFR25.853(d)

- Added in 1986
- Current FAR Appendix F Part IV
- Applicable to interior exposed surfaces greater than 144 square inches
- Measure heat release as a function of time
- Test code: HR

- Reproducibility challenges persist
- Specification does not tightly control some key parameters
- Decades of certification data in use

*Presented June 2012

HR2 - Next Generation OSU

Design and Other Changes

- Elimination of cooling flow / inner chimney
- Insulation / metal wall specification changes
- Coupon location in chamber specified
- Air and methane flows controlled via MFCs
- Single lower Tcouple DAQ correction
- HFG calibration / limit changes (3.65 W/cm²)
- Methane calibration and cal factor correction
- Multiple additional procedural changes

*Presented October 2016

Anticipated Improvements

- Repeatability driven by design and cal changes
- Reproducibility increased via spec controls
- Cross industry variation greatly reduced

Introduction

 HR2 Goal: Define a robust method to determine peak and total heat release that improves repeatability and reproducibility when compared with OSU

Status

- NASA Technical Readiness Level (TRL) model adopted
- TRL 4 Robustness completed DOE defined key parameters and variation
 - Identification of Key Parameters influence levels
 - Reduced variation in Calibration Factors
 - Improved uniformity of Stability Runs
- HR2 is in TRL phase 5 Repeatability
- Phase I completed in Fall 2018 inconclusive, indicated more work was needed

HR2 Development TRLs & Gates

TRL 5 - *Repeatability* - variation in measurements taken on the same item under the same conditions. Homogenous coupon tested multiple times using one unit.

Gate 5 / Enter **TRL 6**: Coefficient of Variation (CoV) improvement vs. OSU

TRL 6 - *Reproducibility* - variation in measurements taken on the same items under the same conditions using different machines.

Gate 6 / Enter **TRL 7**: Individual coupon type CoV and ANOVA evaluation

TRL 7 - *Range* - Finalized prototype equipment demonstration on range of production configurations. HR2 pass/fail criteria (peak/total) established.

Gate 7 / Enter **TRL 8**: Consistent results over a range of sample types

TRL 8 - *Guidance* - drawings release, equipment built to standards, 'qualified' through test and demonstration.

Gate 8 / Enter **TRL9**: Qualification criteria and test guidance established

TRL 9 - *Round Robin* - Multiple production units verified by successful round robin testing.

Gate 9 / **Production Readiness**: Significant R&R improvements vs. OSU

HR2 Changes Prior to TRL 5 Phase Two

Equipment and Process Changes to Improve Repeatability

- Marlin prototype voltage control system installed on OSU and HR2
 - Active monitoring and control of globar voltage and current
- Standard coupon preparation process, materials, and tools¹
- Mass flow controller calibration verified⁴, downstream meter installed²
- Airflow humidity gauge installed and monitored³
- Daily cleaning and calibration prior to testing
- Standard operating process and intervals

TRL 5 - Phase Two Test Plan

100 randomized samples of 2 homogenous coupon types

- 1. Honeycomb Sandwich Panel (Schneller) provided by Schneller
- 2. Honeycomb Sandwich Panel with Decorative (HPD) provided by Boeing

Two test locations - two instruments

- Marlin Engineering OSU tested May 6 10th at Boeing, Everett, WA <baseline>
- Marlin Engineering HR2 tested May 20 24th at FAA TC, Egg Harbor Twp, NJ

Repeatability evaluated using the coefficient of variation (CoV = σ/μ)

Anticipated HR2 CoV improvement versus OSU baseline - no exact target defined

TRL 5 Phase II Test Matrix - OSU and HR2

													Supply					2-Min	
										Room	Room	Supply	Air	Air Flow			Peak	Total HR	Tpile
					Dec	Coupon		Week	Test Start	Temp	Humidity	Air Temp	Pressure	/ Split	Sample	Peak	Time	(kW-	Baseline
Unit	Day	Set	Order	Coupon ID	Delam	Туре	File Name	Day	Time	(°F)	(% RH)	(°C)	(mmHg)	Ratio	Holder #	(kW/m2)	(sec)	min/m2)	(mV/⁰F)
OSU	1	1	4	HPD-118	Х	HPD	OSU-Day1-Set1	М	2:45 AM	68.0	50	22	198	2.5	1	47.59	17	42.12	26.84
OSU	1	1	6	HPD-5		HPD	OSU-Day1-Set1	М	2:59 AM	68.1	50	22	198	2.5	3	39.08	19	46.69	26.57
OSU	1	2	8	HPD-134		HPD	OSU-Day1-Set2	М	3:15 AM	68.1	50	22	198	2.4	1	45.48	15	45.57	26.94
OSU	1	2	9	HPD-55	Х	HPD	OSU-Day1-Set2	М	3:22 AM	68.0	49	22	198	2.4	2	43.27	17	43.00	26.67
OSU	1	2	12	HPD-26		HPD	OSU-Day1-Set2	М	3:45 AM	68.0	50	22	198	2.4	1	45.57	16	44.21	26.60
OSU	1	2	13	HPD-75		HPD	OSU-Day1-Set2	M	3:52 AM	68.1	50	22	198	2.4	2	42.00	17	45.24	26.46
OSU	2	1	15	HPD-27		HPD	OSU-Day2-Set1	Т	9:42 AM	68.4	47	21	198	2.4	2	47.42	16	48.28	26.69
OSU	2	1	16	HPD-38		HPD	OSU-Day2-Set1	Т	9:50 AM	68.5	47	21	197	2.4	3	33.53	21	40.92	27.04
OSU	2	1	17	HPD-111	Х	HPD	OSU-Day2-Set1	Т	9:58 AM	68.4	46	21	197	2.4	4	38.73	18	41.49	26.78
OSU	2	1	21	HPD-52		HPD	OSU-Day2-Set1	Т	10:31 AM	68.6	46	21	197	2.5	4	38.53	20	44.61	26.58
OSU	2	2	23	HPD-80		HPD	OSU-Day2-Set2	Т	10:47 AM	68.2	48	21	197	2.5	2	41.07	17	47.28	27.04
OSU	2	2	26	HPD-135		HPD	OSU-Day2-Set2	Т	12:42 PM	68.4	47	22	198	2.4	1	45.21	14	46.61	26.80
OSU	2	2	29	HPD-44		HPD	OSU-Day2-Set2	Т	1:12 AM	68.4	48	22	198	2.4	4	43.79	17	44.64	26.71
OSU	2	3	31	HPD-58	Х	HPD	OSU-Day2-Set3	Т	1:33 AM	68.3	48	22	199	2.4	2	41.66	17	42.94	27.04
OSU	2	3	33	HPD-72	Х	HPD	OSU-Day2-Set3	Т	1:48 AM	68.3	48	22	199	2.4	4	36.67	17	42.23	26.83
OSU	2	4	38	HPD-24		HPD	OSU-Day2-Set4	Т	2:25 AM	68.0	49	22	199	2.4	1	37.29	16	43.70	27.02
OSU	2	4	41	HPD-117		HPD	OSU-Day2-Set4	Т	2:49 AM	68.1	49	22	198	2.4	4	40.62	17	44.76	26.82
OSU	2	5	43	HPD-120		HPD	OSU-Day2-Set5	Т	3:06 AM	68.0	49	22	198	2.5	2	42.67	17	47.59	26.99
OSU	2	5	46	HPD-31		HPD	OSU-Day2-Set5	Т	3:26 AM	67.8	49	22	198	2.4	1	44.21	16	49.03	26.69
OSU	2	5	47	HPD-59		HPD	OSU-Day2-Set5	Т	3:33 AM	68.0	49	22	198	2.5	2	33.44	19	43.26	26.74
OSU	3	1	52	HPD-110	Х	HPD	OSU-Day3-Set1	W	8:31 AM	68.4	47	21	200	2.5	1	43.38	17	46.03	26.88
OSU	3	2	60	HPD-69		HPD	OSU-Day3-Set2	W	9:41 AM	68.6	46	21	200	2.5	1	38.83	19	43.84	26.87
OSU	3	2	62	HPD-65		HPD	OSU-Day3-Set2	W	9:56 AM	68.4	46	21	200	2.5	3	37.74	20	42.91	26.79
OSU	3	2	63	HPD-48	Х	HPD	OSU-Day3-Set2	W	10:03 AM	68.5	46	21	200	2.4	4	40.51	17	45.41	26.62
OSU	3	3	65	HPD-35	Х	HPD	OSU-Day3-Set3	W	10:19 AM	68.2	47	21	200	2.4	2	44.89	17	45.55	27.01
OSU	3	3	66	HPD-46		HPD	OSU-Day3-Set3	W	10:25 AM	68.2	47	21	200	2.4	3	40.53	17	44.63	26.87
OSU	3	3	69	HPD-53		HPD	OSU-Day3-Set3	W	10:48 AM	68.1	48	21	199	2.4	3	35.25	23	42.63	26.64
OSU	3	4	73	HPD-126	Х	HPD	OSU-Day3-Set4	W	12:30 PM	68.5	48	22	199	2.5	1	40.96	18	40.86	26.79
OSU	3	5	78	HPD-61	Х	HPD	OSU-Day3-Set5	W	1:07 AM	68.4	49	22	199	2.4	2	44.56	16	46.00	26.79
OSU	3	5	79	HPD-136	Х	HPD	OSU-Day3-Set5	W	1:15 AM	68.4	48	22	199	2.4	3	54.56	15	51.30	26.78
OSU	3	5	80	HPD-139		HPD	OSU-Day3-Set5	W	1:21 AM	68.5	48	22	199	2.4	4	39.05	17	47.67	26.55
OSU	3	5	82	HPD-93	Х	HPD	OSU-Day3-Set5	W	1:35 AM	68.5	49	22	199	2.4	2	40.84	18	45.62	26.47
OSU	3	6	86	HPD-84		HPD	OSU-Day3-Set6	W	2:10 AM	68.2	49	22	200	2.4	1	35.09	19	39.99	27.02

Actual number of coupons tested:

<OSU> Schneller - 101, HPD - 72

<hr/>

General Observations

OSU vs HR2 Peak Time and Shape

- HR2 peak times were equivalent to OSU peak times
- Peak and 2-min total HR2 values were slightly lower than OSU*

Honeycomb Panel with Decorative (HPD) - Delamination

- Several HPD coupons exhibited varying degrees of decorative delamination
- Delamination effected peak, peak time and 2-min total heat release values
- For these reasons, we should rely primarily on Schneller panel data for comparison of OSU and HR2 repeatability

Schneller Panel - Mean, Std Dev & CoV

- HR2 standard deviation is lower than OSU for Peak, Peak Time, and 2-Min Total HR
- HR2 Peak Heat Release CoV is not significantly different than OSU
- HR2 Peak Time CoV and 2-Min Total CoV show a significant improvement vs. OSU

HPD Panel - Mean and CoV Comparison

- Extent of delamination varied widely, but was not recorded nor considered in randomization
- Peak and peak time standard deviation and CoV are much larger than expected, this is probably due to delamination issues
- 2-Min Total Heat Release standard deviation values are comparable to the Schneller data
 Like the Schneller data, it shows a statistically significant improvement in HR2 CoV

TRL 5 Follow Up Activity - Air Flow

Flow rate difference between OSU and HR2 during TRL 5 testing

Positive correlation between airflow and heat release numbers

Next Steps

Evaluate Gate 5 Exit Criteria

Coefficient of Variation (CoV) improvement vs. OSU

Criteria to be defined and evaluated relative to OSU coupon CoV and be consistent with our stated goal of <u>improving repeatability when compared to the OSU results</u>.

- Criteria met in 2 of the 3 response factors measured (peak time, 2-min total)
- Peak heat release CoV was not significantly different

Potential Paths Forward

- Proceed to TRL 6 recognize significant repeatability improvements captured in current design and procedures. Focus efforts on improving reproducibility.
- Stay in TRL 5 continue to make incremental changes to improve repeatability - repeat HR2 testing once sufficient improvements are complete.

TRL 6

Reproducibility - variation in measurements taken on the same items under the same conditions using <u>multiple HR2</u> machines.

- Gate 6 / Enter TRL 7: Individual CoV and ANOVA analysis
- Coefficient of Variation (Std dev/mean) evaluated for each coupon type tested on each HR2 instrument independently - similar to TRL 5
- Analysis of Variance (One-Way ANOVA) one factor design addresses the question:

Does the instrument used effect the mean peak or total heat release for each coupon type?

- Two instruments minimum (FAATC Marlin, FAATC Deatak, others?)
- 2 3 coupon types (recommend same type used in TRL 5)
- Number of coupons per instrument (30 50?) resolution, confidence desired?

Breakout Session Topics

- Next steps and direction for HR2 development
 - Activity plan
 - Timeline / schedule development
- Additional data discussion & lessons learned during phase two testing
 - Honeycomb panel with dec results and analysis
 - Airflow investigation impact on mean values
 - Voltage conditioning system function and improvements
 - High current connection challenges and potential improvements

Questions?

