Vertical Flame Propagation (VFP) Test Method Update

Presented to: IAMFTWG, Kansas City, MO
By: Robert I. Ochs
Date: June 7 2016
Introduction

- Carbon fiber composites are being used more frequently in aerospace applications
 - Increased strength
 - Lower density
 - Better corrosion resistance

- New designs of commercial transport airplanes include primary and secondary structure constructed from carbon fiber composites

- Current FAR’s do not require flammability testing for fuselage skins or structures, as traditional designs are inherently non-flammable
 - Special Conditions for certification of fire resistance of composite fuselage
 - Must demonstrate level of safety equivalent to or better than traditional constructions

- To continue with the FAA’s efforts to enhance in-flight fire safety, materials in inaccessible areas of the cabin should meet a flammability test based on the “block of foam” fire source
Objective

• Design, construct, and evaluate a new flame propagation test method
 – Determine effectiveness of evaluating flame propagation
 – Determine level of repeatability and reproducibility

• Deliver new test method to FAA Transport Directorate for use in certification of novel design airplanes
 – Inclusion in next-generation fire test requirements
 – Possibly replace current Special Conditions requirements

• Attempt to test other inaccessible area materials on same apparatus
 – Wire insulation
 – Ducts, hoses
Vertical Flame Propagation Test Apparatus

- Hood
- Voltage Control
- Thermocouple Arm
- Viewing Window
- Thermocouples
- Furnace
- Sample Door
- Sample Frame
- Pilot Burner
Ribbon Burner
\[D_{\text{primary}} = 0.04 \text{ in}; \ A_{\text{primary}} = 0.00125 \text{ in}^2 \]
\[D_{\text{pilot}} = 0.0175 \text{ in}; \ A_{\text{pilot}} = .0002405 \text{ in}^2 \]
\[A_{\text{total}} = 51 \times 0.00125 \text{ in}^2 + 32 \times 0.0002405 \text{ in}^2 \]
\[= 0.07145 \text{ in}^2 \]

Original Pilot Burner
\[D = 0.050 \text{ in}; \ A = 0.001963 \text{ in}^2 \]
\[A_{\text{total}} = 0.01178 \text{ in}^2 \]

Area Ratio
\[A_{\text{ratio}} = \frac{A_{\text{ribbon}}}{A_{\text{original}}} = \frac{0.07145}{0.01178} = 6.06 \]
Original Burner

\[A_{\text{total}} = 0.07145 \text{ in}^2 \]

\[A_{\text{ratio}} = \frac{A_{\text{ribbon}}}{A_{\text{original}}} = \frac{0.07145}{0.01178} = 6.06 \]

Small Burner Plug
One Row Covered

\[A_{\text{total}} = 0.04635 \text{ in}^2 \]

\[A_{\text{ratio}} = \frac{A_{\text{ribbon}}}{A_{\text{original}}} = \frac{0.04635}{0.01178} = 3.93 \]

Large Burner Plug
Two Rows Covered

\[A_{\text{total}} = 0.0251 \text{ in}^2 \]

\[A_{\text{ratio}} = \frac{A_{\text{ribbon}}}{A_{\text{original}}} = \frac{0.0251}{0.01178} = 2.13 \]
Ribbon Burner – Summary

- Ribbon burner as received produced a flame too large and buoyant for VFP
- Modifications to reduce the exit area of the burner provided flames more similar to the original VFP pilot burner
- Test results obtained with the modified ribbon burner provided similar results to the original VFP pilot burner
 - A flame impingement time of 30 seconds seemed to provide the most similar test results to the original VFP pilot burner
- Advantages of using ribbon burner are clear, more work required to obtain the best possible pilot flame
 - Produces a flat, straight mostly uniform flame across 2"
 - Alignment with wires significantly improved over original VFP burner
 - A burner-to-sample distance of 7/8" or greater provides good results, and reduces the likelihood of melting or intumescing materials clogging the pilot burner
Ribbon Burner Status

• 3 different burners were ordered in February
• Manufacturer has had significant production delays
• They are hoping to deliver within the next 2 weeks
New Lab – Building 202

- New lab acquired by Fire Safety
 - VFP was moved in to B202
- Modifications necessary before testing can begin
 - Installation of exhaust hood and piping
 - Awaiting approval of design by facility safety and engineering
Introducing VFP 3.0

• New and improved VFP
• Features:
 – Smaller footprint
 – Controlled air inlet
 – Double-door system to keep backside smoke out of lab
 – Larger viewing windows
 – Improved sample frame
Introducing VFP 3.0

• New and improved VFP

• Features:
 – Smaller footprint
 – Controlled air inlet
 – Double-door system to keep backside smoke out of lab
 – Larger viewing windows
 – Improved sample frame
Contact:
Robert I. Ochs
Fire Safety Branch
William J. Hughes Technical Center
ANG-E212; Bldg 287
Atlantic City, NJ 08405
T 609 485 4651
E robert.ochs@faa.gov