AircraftFire Project

A350-1000A

Fire risks assessment and increase of passenger survivability FP7 EASN Project - EU Grant Agreement n° 265612

2011 - 2013

www.aircraftfire.eu

Jean-Michel Most, coordinator CNRS, Pprime, Poitiers, France Contact: jean-michel.most@ensma.fr

© AIRBUS S.A.S. 2010 - COMPUTER RENDERING BY FIXION - GWLNSD

1/ Presentation of the AircraftFire project and first results

2/ Fire performance of aeronautical composites

- New experimental setup
- Fire behaviour of composite materials

The AircraftFire Project

AcF Research Objective

Evaluation of fire threats and passenger survivability in new generation of aircrafts

Characterisation of the fire performance of composite materials (physical/chemical/thermal flammability and burning properties) for aircraft design and fire safety analysis (modelling)

> Development and validation physical models correlated to the evolution of the fire scenarios,

Modelling of the cabin fire growth and passenger evacuation

Recommendations for efficient industrial technologies

The fire threat in new generation of aircrafts

Aluminium is substituted by flammable composites for decorative panels, hull, wing, cowling, structure, etc.

The fire threat can significantly increase due to...

- > The flammability of materials in high temperature environment
- The toxicity of the smokes
- The total aircraft fuel load

With impact on the fire development and the passenger evacuation

Higher energy supply for avionics and electronics

➔ fire risks (ignition,...)

Material fire performance Fire Growth and Evacuation

1/ Material performance during fire (experimental)

- ✓ Material characterisation and behaviour during fire
- Ranking of material performances
- ✓ Behaviour under low pressure (partly simulation of altitude)
- ✓ Behaviour under load

2/ Fire growth and evacuation (modelling)

- The enhancement of a full scale modelling of fire development (SMARTFIRE) in new generation of aircrafts;
- The adaptation and enhancement of a numerical evacuation model (airEXODUS) during post-crash.
- ► **3D Visualisations**

Univ. Greenwich, EADS, Univ. Iceland

AircraftFire: Organisation

Number and Rate of Fire Related Occurrences (UK Fleet) A-High Severity and D Low Severity

CAA, Fraunhofer

Causal factors for Fire occurrences

number of occurrences

CAA, Fraunhofer

Distribution of Fire occurrences by phase of flight

Composite materials in aircrafts

5 Thermosets

Figure 6.1. Ply structure of laminated composites and common examples of ply architecture.

- Carbon fibres reinforced epoxy composites (hull, wing, structure) flammable and decompose when exposed to fire
- Glass fibres reinforced phenolic composites (decorative panels) low flammability and good fire resistance

2 Thermoplasts

Seats, next aircraft generation

better mechanical properties, recycling

5 Cabin Materials

• Cabling, seating, thermo-acoustic, carpet,...

June 19-20th, 2013

FAA Material Working Group, Manchester

CAA, EADS, Airbus

3 Fire scenarios

> Hidden zone fire

✓ Fire spread, fire propagation

In-flight fire

✓ Flammability of materials under load and at low pressure + flame impact

✓ Sustainability of flame in altitude

Post-crash fire

- ✓ Kerosene pool fire modelling
- \checkmark Fire growth and evacuation
 - Post-crash fire with cabin integrity
 - Post-crash fire with rupture of the cabin or cracks of the skin

AircraftFire: Organisation

Methodology to determine material flammability properties

Key Flammability properties	Techniques					
Conductivity, Specific heat, Heat of pyrolysis	MDSC					
Glass transition temperature, Melting temperature, Heat of melting, Heat of pyrolysis, Specific heat	DSC					
Ignition temperature (or the critical heat flux) % of residues, Kinetic parameters for reaction (i.e. activation energy and pre-exponential factor)	TGA					
Quantification and history of gases emission	TGA - FTIR					
Heat of combustion, efficiency of combustion Heat released rate / mass loss rate, CO, CO2, smoke fields Smoke point height	Cone calorimeter					
Influence of the ambiant medium, equivalence ratio	Universal flammability apparatus (UFA)					
Optical density of smoke	Smoke chamber					

June 19-20th, 2013

Firesert, Univ. Patras, CNRS P', CORIA, Trefle

Methodology to determine material flammability

FAA Material Working Group, Manchester Firesert, Univ. Patras, CNRS P'

Optical density of smoke

Objectives: measurement of the optical properties of smokes ===> correlation with their concentration and size

Optical density of smoke

Smoke sampling and devices for measuring particle parameters

FAA Material Working Group, Manchester

AircraftFire: Organisation

Generic Hidden Zone Fire

Experimental and Numerical studies

Objective: To evaluate the consequences of fire in hidden zones, and its propagation into cabin and cockpit

- The effect of under ventilation and of the depletion of oxygen
- Smouldering
- Fire spreading from a local initial fire
- Presence of unburned pyrolysis gases which may ignite if oxygen concentration is increased
- Burnthrough related phenomena

Generic Hidden Zone Fire

Univ. of Patras Experimental device

Univ. PATRAS

Create dynamic models to compare crash between metallic and composite aircrafts

- Therefore compare existing metallic body with composite
- Can compare the crash characteristics of an A320/B737 with simulated performance of a composite
- Examine forward velocity effects
 - Certification vertical drop only
 - Confirm model with actual crash response

AircraftFire: Organisation

Model development and fire and evacuation simulations 3D Visualization

Joint Fire and Evacuation Simulation Method

Univ. Greenwich

Impact of Exit Opening Times On Evacuation

Base Case: the reconstruction with the actual times to open the exits in the accidentL1(25s), R1 (70s), ROW (45s), R2 (0s)

Scenario 4: 10s for R1 and 12s for ROW – ideal case, all exits opened as planned

Could the loss of life have been significantly reduced if the R1 exit was opened earlier? Did the delay in opening the ROW exit impact survivability?

June 19-20th, 2013

Smoke visualisation

Smoke visualisation: from left to right the density of smoke increased at same light source parameters

Kerosene pool fire engulfing a full-scale aircraft modelling

Temperature, flame spread rate, CO/soot over the composite fuselage

✓ Pool size from 10, 20, 30 to 40 m

- ✓ Fuel position : below one engine
- ✓ Burning rate of the liquid fuel : about 6 mm/min
- ✓ Heat release rate : higher than 800 MW
- ✓ Time to steady state : about 30 s

Temperature and heat flux on the fuselage surface

Modelling

Experimental and Numerical fields

Wind - kerosene pool fire (D=19 m) engulfing a large cylinder object (d=3.7 m)

FAA Material Working Group, Manchester

AircraftFire

In-house Burnthrough test Facility

FAA Material Working Group, Manchester

The burnthrough test: → Time of burnthrough Efficiency of the barrier to the flame

Flux 182kW/m² (fuselage, wing, structure) Flux 106 kW/m² (engine) Gas Temperature: 1100°C

Photos from FAA website

Material Characterization with In-house Burnthrough Test Facility

***** Features:

- Premixed burner
- Inside diameter injection D: 35 mm
- Burner / Sample distance 1.7, 3.5 and 5.2 cm
- Co-flow outside Nitrogen

***** Parameter Setting:

- Burner exit temperature, T_{exit}: 830 to 1172 °C
- Output speed constant cold: u_c = 2.3 m/s; hot: 12m/s
- > Turbulent flow Re \cong 4700
- > Mass fraction of $y_{O2} = 0$ to 0.06 at the burner exit
- Pressure 0.2 to 1 atm, load effects

***** Diagnostics during tests:

- Flowmeters for air, fuel gas, nitrogen
- ➢ Weight sensor → Mass loss → Mass Loss Rate MLR
- Thermocouples
- Video camera

Schematic and snapshot of facility

Heat Flux calibration

Radiometer – Tube calorimeter

Aluminium (2mm thickness)

June 19-20th, 2013

Aluminium: Burnthrough Data

Authors	Burnthro	Sample	Device of tests	350																	
	ugh time,	surface		MEDIAM DE LA													г				7
	t _b sec	and Test													Г		1	Prese	nt wo	ork	
		No,		200												er	í L				
Webster, H (1994),	30		Full scale fire	300	200										est	nrn			_/		
FAA			test on aircraft												Le	as b					
			fuselage											1	1	e g		m2			
Marker (1996),	60		Full scale	250	100						rest				I pa	Lar		κW/			
FAA			burnthrough	22					L		rd [ma	[: (]		551			
			test	Š							nda					2011	i L	-			
Dodd (1996), CAA	223	clean	Burnthrough								Sta					is ()					
	43	sooted	furnace test	Ĕ 200							90				2	nitr	Ì		┨.		
Marker (1996),	120	1	Standard	h ti			E				(1)	Г	t		ope	Dir	Ì	0) sec		
FAA	55	2	burnthrough	ng D		age	le B				ker		Tes					N/m	4 3(Ŋ
			test	² 150	-	usel	sca		test		Iar		ner					2 kV	Soc S		50 se
Petit (1998), CEAT	30	1	Small burner	nth		le f	Full		lace				bur					200	n2 :		oot (
	40	2	burnthrough	In		l sce	() ()		uru'		/		nall								ž
			test	<u>е</u>		Ful	199		I : (: Sr						03 k		/m2
Lopez (2000)	163		Small scale pan	100		(4)	er (966				96						5		kγ
			fire			(199	Iark		[] []				(19								202
Dimitris et al.	173		Large In-house			ter	Z		Dod				etit								-
(2011)			gas burner	50		/ebs						L									
						5															
Present work	289	1	Small In-house																		
(Pprime)	130	2	gas burner	0																	
	89	3		0				_			10 M 10										
	64	4			C	omp	lete	bu	rnth	roi	ıgh	dat	a fo	r al	un	nin	iur	n b [:]	=2 1	mr	n

Aluminium (2mm thickness)

June 19-20th, 2013

Burnthrough time for composite Material AcF2

Burnthrough time > 17 minutes (1000 seconds) <u>No Burnthrough is observed</u>

Composites : Material Swelling

During resin vaporization, the resin escaped through closely spaced fibre (carbon or glass). This in turn produces internal pressure in the composites and therefore the sample swells i.e. the composite expands in response to internal pressure.

Temperature and Mass Loss Rate (AcF2)

Backside Temperature / MLR correlation

AircraftFire

SEVENTH FRAMEWORK PROGRAMME advancing the frontiers

June 19-20th, 2013

FAA Material Working Group, Manchester

- > Pyrolyis and burning of resin degradation products
- > Maximum of MLR peak \uparrow with Y_{02}

Strong influence of O₂ due to high temperature reaction (T=1100°C) June 19-20th, 2013 FAA Material Working Group, Manchester

Influence of material Thickness b

900

Comparison AcF1, AcF2, AcF3 (Epoxy/graphite fibers)

AcF9-1 (Phenolic/Glass fibers) advancing the frontiers $q = 155 \ kw/m^2$, $yO_2 = 0.06 \ \tau = 430 \ s^{-1}$, $u_g = 12 \ m/s$ SEVENTH FRAMEWORK PROGRAMME 25 900 -AcF1 800 -AcF2 Mass loss rate, MLR g/m²s 0 01 21 05 -AcF3 700 -AcF9-1 Femperature, T oC 600 500 400 -AcF 1 300 -AcF 2 200 -AcF 3 -AcF 9-1 100 0 0 50 100 150 200 250 300 350 0 20 160 40 60 80 100 120 140 180 0 Time, t sec Time, t sec **MLR Backside Temperature**

✓ V_{comb epoxy+FC} > V_{comb phenolic+FV}
✓ T_{int epoxy+FC} < T_{int phenolic+FV} (thermal conductivity)
✓ Always char layer formation with phenolic resin

June 19-20th, 2013

AircraftFire

Degradation times and respective peaks of MLR

			Aluminium	Composite				
Sr. No.	Experimental Paramete	ers variations	Burnthrough time (seconds)	Time for backside degradation (seconds)	Maxima of MLR (g/m ² s)			
1	Heat Flux, q (kW/m ²)	75	-	115	7.26			
		106	infini	100	7.84			
		155	175	60	16.96			
		202 (no soot deposition)	130	46	21.12			
		202 (soot deposition during 30s)	85	-	-			
		202 (soot deposition during 30s)	64	-	-			
2	Thickness b_m (m) (Heat Flux, $a = 202 \text{ kW/m}^2$)	0.002		20	15.5			
	()	0.004		60	16.96			

Material burning under load

Experimental device

Experiment consists of exposing a sample of composite material to a flow of hot gases generated in the burner while applying a bending load

Contraint in fibers exposed to the flame: Tension stress

Contraint in fibers exposed to the flame: Compression stress

Material burning under load

Before crack

After crack

Material burning under load

Sample after testing

AcF2 Failure Time (HF) b=2mm (Deflection 30mm) b=4mm (Deflection 15mm)

Burner – composite distance: 5.2cm

Conclusion

Burnthrough standard test burner

- Parameters:
 - Temperature and heat flux at the material location, imposed geometry
 - Type and Material thickness
- Main Result: burnthrough time (passed/failed tests)

Burnthrough AircraftFire burner

- Parameters:
 - Temperature and heat flux at the material location
 - Material thickness, Y₀₂, τ, Pressure, Load, etc.
- Results:
 - Burnthrough time!
 - Burning rate (combustion regimes (char), effects of additives)
 - Measurements of interface temperatures (heat flux inside the composite)

Fast and low cost tests for materials (composites)

Conclusion

> No burnthrough observed for composites in the studied conditions

(up to 15minutes)

• Heat flux: 182kW/m² Gas Temperature: 1100°C

Main results

✓ <u>V_{combustion} mass loss of 24-30% in mass of the sample</u> resin

Peak 1 of MLR

 Pyrolysis and combustion

- ✓ Peaks 2 of MLR
 - Protective char formation
 - Char combustion
- End of resin combustion (less than 3 minutes)

Fire propagationistic storedation consequences

- Aluminium : Time for Burnthrough
- **Composite**: Time for beginning of backside off gassing T_{back}=T_{deg}
 - → Potential diffusion of toxic gases in the cabin
 - → Ignition of fuel degradation products

AircraftFire partners

Organisations	Responsible	E-mail
CNRS Pprime	Jean-Michel Most	Jean-michel.most@ensma.fr
CNRS Trefle	Jean-Christophe Batsale	jean-christophe.batsale@trefle.u-bordeaux.fr
Fraunhofer	Goert Luedtke	goert.luedtke@fkie.fraunhofer.de
Airbus	Stephane Pugliese	stephane.pugliese@airbus.com
САА	Graham Greene	Graham.greene@caa.co.uk
EADS	Mario Cappitelli	Mario.Cappitelli@eads.net
Univ. Iceland	Bjorn Karlsson	bjorn@mvs.is
Univ. Greenwich	Ed. Galea	E.R.Galea@greenwich.ac.uk
FIRESERT	Michael Ddelichatsios	m.delichatsios@ulster.ac.uk
CORIA INSA	Alexis Coppalle	alexis.coppalle@coria.fr
Univ. Patras	Thrassos Panidis	panidis@upatras.gr
Univ. Edinburgh	Jose Torero	j.torero@ed.ac.uk
TUDelft	Rene C. Alderliesten	R.C.Alderliesten@tudelft.nl
June 19-20th, 2013	FAA Material Workin	g Group. Manchester 49

THANK YOU FOR YOUR ATTENTION