Development of a Laboratory Scale Flame Propagation Test Method for Structural Composites

Federal Aviation Administration

Presented to: IAMFTWG, Toulouse, France By: Robert I. Ochs Date: June 20-21

Review from Singapore

- Intermediate scale tests were performed on aerospace grade structural composite material of varying thickness
 - 4, 8, 16, 24, 32 plies and a honeycomb sandwich panel
 - Various configurations were tested
 - Exposed backside
 - Insulated backside
 - Water-cooled backside
 - Backside heat loss found to have a significant effect on inboard-side burning

Lab-Scale Test Method Development

- The foam block fire source was characterized by measuring the heat flux gradient along an insulated board for the duration of the foam burning event
- This heat flux gradient will then be used to impose a similar heat flux on a smaller sample in a lab-scale test apparatus

Heat Flux Gradient – Intermediate Scale

Vertical Radiant Panel (VRP) Development

- Objective: to develop a "new" radiant panel type test that will:
 - Simulate conditions of a foam block test
 - Incident heat flux on sample
 - Duration
 - Geometry
 - Correlate results from foam block test
 - Use current database of materials already tested
 - Aerospace/non-aerospace grade composites (1/8" thick)
 - Aerospace grade carbon epoxy, varying thicknesses
 - Cargo liners and floor panels, varying thicknesses

VRP Configuration

- Heat flux gradient
 - A tilted panel was used to attempt to achieve the same measured gradient as the foam block test
 - Furthest backward tilt (70°) could not achieve steep enough gradient
 - Zero position heat flux too low
- Next attempt:
 - Separate emitter strips into 3 individually controlled pairs to control the heat flux gradient

Current Configuration

New Configuration

Bottom 2 Strips Only

IAMFTWG, June 20-21, 2012, Toulouse, France

RECENT RESEARCH

Composite Test Method Development IAMFTWG, June 20-21, 2012, Toulouse, France

Modifications to VRP

 Swivel doors added to make switching between calibration and testing quick and easy

Original Pilot Burner

Measured Heat Flux

Original Radiant Panel Pilot Burner

Unidirectional NBS Chamber Pilot Burner

Foam Block

Multiple Flamelet Burner

Multiple Flamelet Burner - Measured Heat Flux

Measured Heat Flux

Composite Test Method Development IAMFTWG, June 20-21, 2012, Toulouse, France

16 ply ACF1

Observations

- 16 ply ACF1 performed very well in all foam block tests with minimal evidence of burning
- Pilot flame gas flow rate for this test produced a tall flame with a large footprint
- Reduce flow rate and re-test

16 ply ACF1 – smaller flame

Observations

- Reducing the gas flow rate resulted in a much smaller flame with smaller footprint, making it easier to observe flame propagation from the ignition point
- Under these test conditions, 16 ply ACF1 still burned more than the foam block tests indicated
- Panel heat flux should be changed to get closer to measured foam block heat flux

Measured Heat Flux

Multiple Flamelet Burner Measured Heat Flux

16 ply ACF1 – smaller flame, lower heat flux

ACF1-HC

Foam Block and VRP Burn Lengths

Composite Test Method Development IAMFTWG, June 20-21, 2012, Toulouse, France

Foam Block Burn Time and VRP After Flame Time

16 Ply ACF1

8 Ply ACF1

ACF1-HC

GRP

Observations

- The smaller flame and lower heat flux settings correlate reasonably well with foam block test for the materials tested
- More materials are to be tested in both foam block and VRP

Contact: Robert I. Ochs Fire Safety Branch William J. Hughes Technical Center ANG-E212; Bldg 287 Atlantic City, NJ 08405 T 609 485 4651 E robert.ochs@faa.gov

Federal Aviation Administration