Analysis and Design of the Federal Aviation Administration Fire Test Burner

Particle Image Velocimetry Applied to Fire Safety Research

Presented to: International Aircraft Materials Fire Test Working Group – Köln, Germany

By: Robert lan Ochs

Date: Wednesday, June 17, 2009

Federal Aviation Administration

Outline

- Motivation
- Objectives of Study
- Explanation of PIV
- Acquired Data
- Summary and Future Work

Motivation

- The FAA utilizes a modified oil burner to simulate the effects of a post-crash fuel fire on an aircraft fuselage and interior components
 - The specified burner is a typical home heating oil burner
 - Burner uses JP8 or Jet A jet fuel
- Burner flame characteristics scaled directly from measurements made from full scale pool fire testing
 - Heat flux
 - Temperature
 - Material burn-through times
- The burner is used to measure the fire worthiness of aircraft materials
 - Seats, thermal-acoustic insulation, and cargo liners

Objectives of Current Investigation

- Develop a re-designed NexGen burner
 - Independent of previous components that have limited availability
 - Produces similar flame and test results
 - Increased accuracy and consistency
- Must investigate original burner
 - Determine parameters that most influence burner output
 - Study each parameter individually then combinations of parameters
 - Develop new components and configurations

Methodology

- Utilize flow measurement techniques to study the operation of the burner and assess each component or parameter
- Selection of a technique:
 - Hot Wire Anemometry
 - Laser Doppler Anemometry
 - Particle Image Velocimetry

• PIV was chosen as the most robust method for this study

- Instantaneous, non-intrusive, planar velocity measurements in 2-D with capabilities for 3-D
- Hot and cold flows (reacting and non-reacting)
- Capabilities for particle sizing (spray characterization)

Particle Image Velocimetry

 Λt

Particle Image Velocimetry (PIV)

- Fluid flow measurement technique
- Measures the displacement of small particles entrained in the flow over a short period of time and calculates the velocity at discrete points

Key Advantages

- Non-intrusive measurement of flow
- Whole-field measurement: can resolve wide range of flow field areas $(\mu m^2 \rightarrow m^2)$

X

PIV for Fire Safety

- Fire test methods
 - Oil burner
- Sprays
 - Water mist
 - Extinguishment agent
- CFD model validation
 - Smoke transport

Fire Safety's PIV Laboratory

- Dantec Dynamics 3D PIV system
 - 2 FlowSense 2M cameras
 - SOLO PIV 120XT laser
 - PC with Dynamic Studio software for analyzing PIV images
 - Scheimpflug Camera Mounts
 - Beam Splitter
 - Traverse System
 - Precision Powder Seeder
- Current status
 - Laboratory is on-line

Recently Acquired Data

PIV Explanation and Planned Activities June 17, 2009 – Köln, Germany

Burner Air Flow

Exit Air Flow from Draft Tube (Turbulator Removed)

- Measurement plane is 1" from draft tube exit plane
- Flow is seeded with Aluminum Dioxide particles, ~15 micron
- ∆t=100µs

Mean Image – False Color

Raw Data Frame 1, t=0

Raw Data Frame 2, t=100µs

Instantaneous Velocity Field

Mean Velocity Field

P Jւ

Mean Velocity and Vorticity Field

Mean Velocity

PIV Explanation and Planned Activities June 17, 2009 – Köln, Germany

Mean Vorticity

PIV Explanation and Planned Activities June 17, 2009 – Köln, Germany

- The effect of the stator is apparent in the measured flow field
- Curved stator vanes are found to convert nearly axial flow to a swirling counterclockwise (positive) flow
- Vorticity is strongest at the stator vane draft tube boundary, where the imparted tangential velocity is rotated by the curvature of the draft tube
- Flow retains the swirling motion even after exiting the draft tube

Exit Air Flow from Turbulator

- Measurement Plane is parallel to the turbulator exit plane, ¹/₂" from exit
- Flow is seeded with Aluminum Dioxide particles, 15 micron
- **\(\Delta t=100\) us**

Mean Image – False Color

Instantaneous Velocity Field

۲ ا

23

m/s

Mean Velocity Field

J

24

Mean Velocity and Vorticity Fields

н Ј

25

1/s

Mean Velocity

Mean Vorticity

Comparison – Vector Fields

Comparison – Vorticity

Air Only – Turbulator Off

Air Only – Turbulator On

Analysis

- The effect of the turbulator is apparent in the flow field
- The magnitude of the velocity on the periphery of the flow field is significantly reduced by the action of the turbulator, from ~4 m/s to ~1 m/s
- The regions of strong vorticity on the edges of the flow are compressed into the central region of the flow by the turbulator
- This centralized high rotation region is intended to interact with the high mass, high momentum fuel droplets in the spray cone

Future Measurements

- Make similar iterative measurements at locations downstream
 - Study frequency and behavior of flow as a function of axial location
 - This may give insight into optimal location, position of stator and turbulator
- Perform same measurements, study effect of variables
 - Air flow rate
 - Air temperature
 - Fuel spray as seeding

Preliminary Flame Measurements

- Initial measurements were made on the burner flame approx 3 inches from burner cone exit plane
- Narrow band filters were necessary to block all wavelengths except for 532 nm laser light
- Flame is extremely luminous, soot emission at 532 is much stronger than seed particle emission
- An external electro-optic shutter is necessary to avoid over-lightening of the second frame

PIV Explanation and Planned Activities June 17, 2009 – Köln, Germany

Acquired Images – Single Camera

Normal Plane

PIV Explanation and Planned Activities June 17, 2009 – Köln, Germany

Federal Aviation Administration

Acquired Images – Dual Camera

PIV Explanation and Planned Activities June 17, 2009 – Köln, Germany

Administration

Timing Diagram

Dual Camera Method Validation

Camera 1 Frames 1 and 2

Camera 1 Frame 1 and Camera 2 Frame 1

37

Parallel Plane

Mean Velocity – Non-Reacting Parallel Plane

PIV Explanation and Planned Activities June 17, 2009 – Köln, Germany

Federal Aviation Administration m/s

Hot Flow Parallel

PIV Explanation and Planned Activities June 17, 2009 – Köln, Germany

Federal Aviation Administration

Normal Plane

Cold Flow Normal

Hot Flow Normal

43

Summary

- PIV can be used to analyze the various components of the FAA Fire Test Burner
- Successful measurements were made of the burner exit air flow
- A dual camera and beam splitter arrangement was successfully used to obtain two frames for performing PIV in a highly sooting, turbulent burner flame

NexGen, Burnthrough, and PIV Task Group

- Discussion of measurements performed
- Measurement suggestions
- Other uses of PIV relevant to Materials Working Group

Contact: Robert Ochs DOT/FAA Tech Center BLDG 287 Atlantic City Int'l Airport NJ 08405 <u>robert.ochs@faa.gov</u> 1 (609) 485 4651

