Development of In-Flight Flammability Test for Composite Fuselage Aircraft

Presented to: International Aircraft Materials Fire Test Working Group – Köln, Germany

By: Robert Ian Ochs

Date: Wednesday, June 17, 2009

Federal Aviation Administration

Outline

- Introduction
- Objective
- Test Plan
- Radiant Heat Transfer
- Summary

Introduction

- Modern commercial aircraft are being designed with increased amounts of composite materials in the aircraft fuselage and structures
- Composite resins can have a very wide range of flammability
- Traditional aircraft fuselage and structures are constructed from aluminum, which does not react when exposed to a hidden fire source in flight
- It must be proven that if an aircraft is to be constructed of non-traditional materials, the materials chosen must provide at least an equivalent level of safety to aluminum
- Intermediate scale tests have been used to date to show equivalency, but a lab scale test with well defined criteria is necessary for future certification purposes

Objective

- Develop a lab-scale test to determine the propensity of a non-traditional fuselage material to propagate a flame or to sustain flaming combustion
- Test criteria is to be based upon intermediate scale testing
 - Standard fire source used to simulate a hidden fire
 - 4" x 4" x 9" untreated urethane foam block
 - 10cc of heptane soaked into foam to provide more uniform burning
 - Various materials of similar mass and rigidity will be tested, both aircraft grade and non-aircraft

Materials to Test

Fiber-reinforced polymer composites

- Carbon-epoxy
 - Unidirectional and woven carbon fiber layups
 - Variations of resin systems
 - From most flammable to least flammable
 - Create a sample set of materials with a particularly flammable resin system
 - Dope some samples with various amount of flame retardants
 - Brominated epoxies to effect gas phase (high smoke/low char)
 - Phosphorous compounds to effect condensed phase (low smoke/high char)
 - Flammability "should" directly link to percentage of flame retardant compounds mixed in the resin system
- Sandwich panels
 - Structural plies bonded to honeycomb cores

% additives

Structural Plies

Test Configuration Intermediate Scale

- Panel Construction
 - 18" x 48", varying thicknesses 1/8" and up
 - Solid laminates
 - Thin laminates (<10 plies) sandwiching honeycomb core
- Panel at 45° angle to foam block
- Flat panels only, no curvature
- No structural members
- Fire source untreated urethane foam block, 4" x 4" x 9"

Composite Fuselage Flame Propagation June 17, 2009 – Köln, Germany

Federal Aviation

Administration

Composite Fuselage Flame Propagation June 17, 2009 – Köln, Germany

Intermediate Scale

Test Configuration Lab Scale

- Use identical materials from intermediate scale
 - Sample size 12" x 24"
- Use radiant panel apparatus for lab scale testing
 - Develop test parameters based on intermediate scale results
 - Calibration heat flux
 - Pre-heat
 - Flame impingement time

Radiant Heat Transfer

- Emissivity, thermal conductivity of sample materials will dictate surface temperature
- Surface temperature directly relates to the volatilization of material components and therefore the flammability of the material
- For a standard incident radiant heat flux, different materials will attain varying surface temperatures
- A preheat time should be determined that can bring most materials to a particular surface temperature range

Sample

1.5" —

11

Composite Fuselage Flame Propagation June 17, 2009 – Köln, Germany

- Heater calibrated to
 2.2 BTU/ft²s
- Sample exposed for 15 min
- Sample allowed to cool for 15 min

Back T/C Temperatures 1.5" x 1.5" x .125" Samples, 2.2 BTU/ft²s Heat Flux

14

Painted Composite Samples – Before

Three composite samples, 1/8" thick, 1.5" x 1.5", painted with high temp spray paint

Thermocouple on front surface (shielded from radiant heat) and on center of back surface

Kaowool insulation around and behind the sample

After

Silver sample exhibited no delamination or smoking

Gray and White samples exhibited smoking, delamintation, and swelling

Front and Back Surface Temperatures **Silver Composite** 1000 Front ٠ Rear **Onset of Vaporization** 800 Temperature, °F 600 400 200 0 10 15 0 5 20 25 30 Time, min

Composite Fuselage Flame Propagation June 17, 2009 – Köln, Germany

Front and Back Surface Temperatures White Composite 1000 Front ٠ Rear **Onset of Vaporization** 800 Temperature, °F 600 400 200 0 10 15 0 5 20 25 30 Time, min

Composite Fuselage Flame Propagation June 17, 2009 – Köln, Germany

Front and Back Surface Temperatures Gray Composite

Composite Fuselage Flame Propagation June 17, 2009 – Köln, Germany

19

Front Surface Temperatures

June 17, 2009 – Köln, Germany

Federal Aviation Administration

Rear Surface Temperatures

June 17, 2009 – Köln, Germany

Observations

- Surface color determines the amount of radiant heat absorbed by material
- Shiny surfaces reflect more radiant heat than darker surfaces
- For this carbon/epoxy material exposed to a radiant heat flux, the surface color determines the amount of time it takes for the surface temperature to reach the onset of vaporization
- Determine if this has an effect on flame propagation in both intermediate scale and lab scale

Summary

- Intermediate scale testing will begin with non-aircraft materials
 - Plywood
 - Acrylic
 - Honeycomb panels
 - Fiberglass
- Custom formulated composites will be ordered
- Effect of surface color on flame propagation will be studied

Composites Task Group – Thursday A.M.

- Discuss approach to intermediate scale flame propagation
- Materials
- Lab scale test parameters

Contact: Robert Ochs DOT/FAA Tech Center BLDG 287 Atlantic City Int'l Airport NJ 08405 <u>robert.ochs@faa.gov</u> 1 (609) 485 4651

