OSU & NBS Updates 2009 June Materials Meeting

Materials Working Group Michael Burns, FAA Tech Center June 17th & 18th, 2009

Agenda

- 1. NBS Update
 - Photometric System Round Robin
- 2. FAA Heat Flux Gage Calibration Study
- 3. Heat Flux Sensitivity Study
- 4. Maintenance Tips & Reminders
- 5. Next Steps

NBS Photometric System Round Robin

LAST CALL!

- FAA Is Currently Conducting A Round Robin Check Out Of The NBS Photometric System Using Neutral Density Light Filters.
- These Filters Provide A Linearity Check Of Five Data Points.

NBS Photometric System Round Robin

- No Furnace Heat Or Pilot Burner Required
- Zero Then Span System
 - Gradually Slide Filter Over Lower Glass Window
- 21 Labs Have Participated To Date
- Filter Information:
 - Edmund Optics
 - <u>http://www.edmundoptics.com/onlinecatalog/Display</u> <u>Product.cfm?productid=1523</u>
- Filters Are Currently Available For International Lab Testing (Presently, Filters Are Located In France)

Data Will Be Presented At Next Materials Meeting

FAA Heat Flux Gage Working Group Participants

AccuFleet **AEROCON** Airbus Germany Akro Fireguard Aplix Incorporated Bodycote Boeing C & D Zodiac Chase Coating & Laminating CTA **Custom Products** Damping Technologies Delsen DI R Duracote EAR Specialty Composites FAA

Flame Out Inc. GovMark Heath Tecna Herb Curry Inc Isovolta **JAMCO** America I amart Mexmil Company **Orcon Corporation** Polyfab **Polymer Technologies** Schneller Inc Skandia Inc. Starr Aircraft Test Corp **TTF** Aerospace

- Each Lab Shipped To The FAA Tech Center Their Working Heat Flux Gages
- The Gages Were Calibrated By Comparison To A NIST Calibrated HFG
- The Transfer Method Was Made Using A Heated Graphite Plate
- 53 Vatell Gages
- 22 Medtherm Gages

FAA (Using NIST Calibrated HFG) vs. Vatell (Baseline) Calibration Study NOTE: Negative Values Indicated Higher Heat Flux Required

Vatell Heat Flux Calibrations

	Manufactu	<u>irers Slope</u>		FAA Slo	pe as Shipped			
<u>P/N</u>	<u>W/cm2</u>	BTU/ft2-sec	<u>Date</u>	<u>W/cm2</u>	<u>BTU/ft2-sec</u>	<u>% Delta</u>	OHM Reading	<u>coating</u>
TG1000-1A		1.676	3/12/2009		1.3266	-20.8%	0.5	Pryomark 1200
TG1000-1		0.542	3/9/2009		0.4355	-19.6%	1.0	Pryomark 1200
TG1000-1B	0.577		3/11/2009	0.4662		-19.2%	0.9	3M Black Velvet
TG1000-1B	0.543		11/4/2008	0.4412		-18.7%	1.1	3M Black Velvet
TG1000-1B	0.578		11/4/2008	0.4701		-18.7%	1.1	3M Black Velvet
TG1000-1B	0.587		6/17/2008	0.4792		-18.4%	0.7	3M Black Velvet
TG1000-0	0.572		3/24/2008	0.4698		-17.9%	1.0	Zynolyte
TG1000-1	0.687		not provided	0.5666		-17.5%	1.05	Krylon 1602 Ultra Flat Black
TG1000-2	0.896		11/1/2007	0.7422		-17.2%	1.25	3M Black Velvet
1000-1	1.861		not provided	1.5549		-16.4%	0.6	Zynolyte
1000-1B	0.614		12/16/2008	0.5157		-16.0%	0.7	3M Black Velvet
TG1000-1A		0.481	2/26/2009		0.404	-16.0%	0.9	3M Black Velvet
TG1000-1B	0.537		4/23/2008	0.4515		-15.9%	0.7	3M Black Velvet
TG1000-1B	0.563		4/9/2008	0.4748		-15.7%	0.7	3M Black Velvet
TG1000-1	0.6		6/17/2008	0.5072		-15.5%	0.7	Krylon
TG1000-0	0.544		1/17/2009	0.4600		-15.4%	0.9	3M Black Velvet
TG1000-1B		0.493	12/16/2008		0.4189	-15.0%	1.0	3M Black Velvet
TG1000-0S	0.599		7/17/2008	0.5098		-14.9%	0.9	Krylon 1602 Ultra Flat Black
TG2000-8F	0.577		7/17/2008	0.4917		-14.8%	0.8	Krylon 1602 Ultra Flat Black
TG1000-1B	0.588		3/9/2009	0.5011		-14.8%	0.8	3M Black Velvet
1000-1	1.737		12/3/2008	1.4830		-14.6%	0.6	Pryomark 1200
TG1000-1B	0.564		11/1/2007	0.4829		-14.4%	0.7	3M Black Velvet

Vatell Heat Flux Calibrations

	<u>Manufactu</u>	<u>irers Slope</u>		FAA Slo	pe as Shipped			
<u>P/N</u>	<u>W/cm2</u>	BTU/ft2-sec	<u>Date</u>	<u>W/cm2</u>	<u>BTU/ft2-sec</u>	<u>% Delta</u>	OHM Reading	<u>coating</u>
TG1000-0	0.547		not provided	0.4706		-14.0%	0.7	Zynolyte
TG1000-0	0.627		10/9/2008	0.5404		-13.8%	0.95	3M Black Velvet
TG1000-1B	0.613		7/14/2008	0.5289		-13.7%	0.8	3M Black Velvet
TG1000-0B	0.627		7/17/2008	0.5421		-13.5%	0.9	Krylon 1602 Ultra Flat Black
TG1000-1	0.602		12/18/2008	0.5207		-13.5%	0.8	Pryomark 1200
TG1000-1	0.520		6/6/2007	0.4507		-13.3%	1.00	Zynolyte
TG1000-1B	0.574		11/4/2008	0.4993		-13.0%	0.7	3M Black Velvet
1000-1A		1.745	7/12/2004		1.5194	-12.9%	0.4	Zynolyte
TG1000-1A		1.570	3/24/2009		1.3699	-12.7%	0.4	Pryomark 1200
TG1000-1B	0.621		8/26/2008	0.545		-12.2%	0.5	3M Black Velvet
TG1000-1B		0.479	6/11/2007		0.4208	-12.2%	0.7	3M Black Velvet
TG1000-0	0.541		12/3/2008	0.4804		-11.2%	1.0	3M Black Velvet
TG1000-1	2.010		not provided	1.7916		-10.9%	1.45	Krylon 1602 Ultra Flat Black
TG1000-1B	0.550		2/6/2008	0.4912		-10.7%	0.8	3M Black Velvet
TG1000-1B	0.529		4/16/2009	0.4787		-9.5%	0.8	not provided
TG1000-1B	0.508		4/16/2009	0.4634		-8.8%	0.7	not provided
TG1000-0	0.581		not provided	0.5305		-8.7%	0.7	Zynolyte
TG1000-1B	0.553		4/16/2009	0.5078		-8.2%	0.7	not provided
1000-1A	1.695		5/3/2004	1.5575		-8.1%	0.40	Zynolyte
TG1000-1B		0.487	not provided		0.4499	-7.6%	0.7	not provided
not provided	0.527		4/10/2008	0.4879		-7.4%	0.7	not provided
TG1000-0	0.591		6/24/2008	0.5473		-7.4%	0.7	3M Black Velvet

Vatell Heat Flux Calibrations

	<u>Manufactı</u>	irers Slope		FAA SIo	pe as Shipped			
<u>P/N</u>	<u>W/cm2</u>	BTU/ft2-sec	<u>Date</u>	<u>W/cm2</u>	BTU/ft2-sec	<u>% Delta</u>	OHM Reading	<u>coating</u>
1000-1	1.546		11/19/2007	1.4326		-7.3%	0.6	Zynolyte
1000-1A	1.978		5/3/2004	1.8537		-6.3%	0.45	Zynolyte
TG1000-1	0.524		12/6/2007	0.4934		-5.8%	0.8	Zynolyte
TG1000-1A	1.876		4/22/2008	1.7837		-4.9%	0.1	Zynolyte
TG1000-1B	0.615		5/4/2009	0.5866		-4.6%	0.75	3M Black Velvet
TG1000-1	1.814		11/15/2005	1.7636		-2.8%	0.4	Zynolyte
TG1000-1A	1.474		11/12/2007	1.4523		-1.5%	0.90	Zynolyte
TG1000-1A	1.987		1/15/2007	1.9814		-0.3%	0.6	Zynolyte
TG1000-1B	0.647		5/28/2008	0.6590		1.9%	1.0	3M Black Velvet

Medtherm Heat Flux Calibrations

	<u>Manufactu</u>	<u>urers Slope</u>		FAA Slo	pe as Shipped			
P/N	W/cm2	BTU/ft2-sec	<u>Date</u>	W/cm2	BTU/ft2-sec	<u>% Delta</u>	OHM Reading	<u>coating</u>
not provided	0.200		not provided	0.1343		-32.9%	37.4	Zynolyte
64-10-19	1.200		11/1/2007	0.9749		-18.8%	1.0	3M Black Velvet
64-5SB-18	0.484		5/6/2009	0.4257		-12.0%	17.8	not provided
64-10-18	1.202		8/26/2008	1.061		-11.7%	0.5	3M Black Velvet
64-10-18	1.249		8/26/2008	1.1337		-9.2%	0.4	3M Black Velvet
not provided	2.130		not provided	1.9832		-6.9%	0.5	Zynolyte
64-5-20	0.6234		12/14/2007	0.6039		-3.1%	0.5	not provided
64-5-18	0.6165		5/6/2009	0.6054		-1.8%	0.5	not provided
64-20-20		1.612	4/28/2009		1.6215	0.6%	1.15	not provided
64-5-20	0.6305		1/12/2009	0.6379		1.2%	0.7	not provided
64-10-18	1.147		11/14/2006	1.1694		2.0%	0.6	not provided
64-10-18	1.068		11/14/2006	1.089		2.0%	0.75	not provided
64-20-18		1.799	4/3/2009		1.8438	2.5%	1.5	not provided
64-10-18	1.125		1/9/2007	1.1582		3.0%	0.5	not provided
64-20-20-31-240-21822		1.685	4/3/2009		1.7398	3.3%	1.0	not provided
64-20-20		1.838	4/3/2009		1.9025	3.5%	1.4	not provided
64-10-18	1.087		1/9/2007	1.1327		4.2%	0.5	not provided
64-15-20		1.336	4/8/1991		1.4745	10.4%	5.1	not provided
64-15-36-18-20491A	1.479		5/10/2009	1.6428		11.1%	0.5	not provided
64-20-18	2.002		5/6/2009	2.2373		11.8%	0.5	not provided
64-20-20		1.770	2/23/2009		2.0034	13.2%	1.4	not provided
64-20-20-31-240-21822		1.642	2/23/2009		1.9139	16.6%	1.0	not provided

Heat Flux Sensitivity Study – OSU/NBS

- Four Different Materials Tested And Identified As Sample A,B,C & D
- The FAA HFG Calibration Slope Was Initially Used For Testing
- The HFG Slope Was Then Increased (Reducing Heat Flux) by 15% And Tests Repeated
- Both OSU and NBS Data Is Presented In The Following Slides

Heat Flux Sensitivity Study - OSU Sample A

Thickness (inches)	0.057
Width (inches)	5.93
Length (inches)	5.93
weight (grams)	47.7

Heat Flux (W/cm2)	3.0	3.5
HFG Slope (W/cm2/mv)	1.063	0.9246
HFG Setpoint (mv)	3.29	3.79

Peak (kW/m2)	38.95	40.99
Time to Peak (Seconds)	169.67	77
Total HRR (kW/m2)*min	23.51	30.06
Weight Loss (grams)	36.00	36.8

Heat Flux Sensitivity Study - OSU Sample B

Thickness (inches)	0.089
Width (inches)	5.93
Length (inches)	5.93
weight (grams)	77.5

Heat Flux (W/cm2)	3.0	3.5
HFG Slope (W/cm2/mv)	1.063	0.9246
HFG Setpoint (mv)	3.29	3.79

Peak (kW/m2)	18.19	33.79
Time to Peak (Seconds)	227	222
Total HRR (kW/m2)*min	-33.12	-17.42
Weight Loss (grams)	41.5	43.7

Heat Flux Sensitivity Study - OSU Sample C

Thickness (inches)	0.089
Width (inches)	5.93
Length (inches)	5.95
weight (grams)	88.8

Heat Flux (W/cm2)	3.0	3.5
HFG Slope (W/cm2/mv)	1.063	0.9246
HFG Setpoint (mv)	3.29	3.79

Peak (kW/m2)	83.62	83.08
Time to Peak (Seconds)	230	213
Total HRR (kW/m2)*min	10.87	46.46
Weight Loss (grams)	68.8	71.3

Heat Flux Sensitivity Study - OSU Sample D

Thickness (inches)	0.073
Width (inches)	5.93
Length (inches)	5.95
weight (grams)	55.8

Heat Flux (W/cm2)	3.0	3.5
HFG Slope (W/cm2/mv)	1.063	0.9246
HFG Setpoint (mv)	3.29	3.79

Peak (kW/m2)	45.55	56.00
Time to Peak (Seconds)	138	120
Total HRR (kW/m2)*min	37.59	49.96
Weight Loss (grams)	37.0	33.5

Heat Flux Sensitivity Study - NBS Sample A

Thickness (inches)	0.0570
Width (inches)	2.93
Length (inches)	2.94
Weight (grams)	12.00

Heat Flux (W/cm2)	2.1	2.5
HFG Slope (W/cm2/mv)	0.566	0.493
HFG Setpoint (mv)	4.31	5.08

Max Ds	75.04	106.28
Weight Loss (grams)	4.33	6.0

Heat Flux Sensitivity Study - NBS Sample B

Thickness (inches)	0.0912
Width (inches)	2.93
Length (inches)	2.93
Weight (grams)	19.50

Heat Flux (W/cm2)	2.1	2.5
HFG Slope (W/cm2/mv)	0.566	0.4926
HFG Setpoint (mv)	4.31	5.08

Max Ds	65.42	104.55
Weight Loss (grams)	5.2	6.0

Heat Flux Sensitivity Study - NBS Sample C

Thickness (inches)	0.0870
Width (inches)	2.94
Length (inches)	2.94
Weight (grams)	22.00

Heat Flux (W/cm2)	2.1	2.5
HFG Slope (W/cm2/mv)	0.566	0.4926
HFG Setpoint (mv)	4.31	5.08

Max Ds	98.35	149.36	
Weight Loss (grams)	5.2	7.2	

Heat Flux Sensitivity Study - NBS Sample D

Thickness (inches)	0.0757
Width (inches)	2.94
Length (inches)	2.95
Weight (grams)	14.17

Heat Flux (W/cm2)	2.1	2.5
HFG Slope (W/cm2/mv)	0.566	0.4926
HFG Setpoint (mv)	4.31	5.08

Max Ds	14.57	34.29	
Weight Loss (grams)	N/A	0.7	

Heat Flux Sensitivity Study - SUMMARY

Observed Percent Change In Values With 15% Increase In Heat Flux.

OSU	А	В	С	D
Peak (kW/m^2)	5%	86%	-1%	23%
Time to Peak (Seconds)	-55%	-2%	-7%	-13%
Total HRR(kW/m2)*min	28%	90%	327%	33%
Weight Loss (grams)	2%	5%	4%	-9%
NBS				
Max Ds	42%	60%	52%	135%
Weight Loss (grams)	38%	16%	39%	N/A

Maintenance Tips & Reminders

- OSU
 - Ensure Calibration T Burner is in same position as lower pilot burner when it is installed for calibration (in place while setting heat flux too!)
 - It may be helpful to have the following ANSI drill sizes (as a kit) to quickly verify proper hole diameters:
 - Air distribution Lower Plate Holes (8) #4
 - Air distribution Second Stage Holes (120) #28
 - Air Distribution Cooling Manifold Holes (48) #26
 - Upper Pilot holes (15) # 59
 - Calibration T Burner (6) #32
- NBS
 - Inspect air supply / propane filters if installed
 - Ensure rear wall temperature thermocouple is mounted to wall and not suspended in free air.

Next Steps

- Complete The NBS Photometric System Round For Presentation At Next Materials Meeting
- Continue To Work HFG Calibration
 Discrepancy Issue
- FAA Contact Information: Michael Burns At <u>mike.burns@faa.gov</u> +1 (609) 485-4985

