Development of a Lab-Scale Flame Propagation Test for Composite Fuselages

Presented to: International Aircraft Materials Fire

Test Working Group, Niagara Falls, NY

By: Robert Ian Ochs

Date: Tuesday, June 17, 2008

Introduction

- With the increased use of non-traditional materials for modern aerospace applications, fire test methods must be continually updated and re-evaluated in order to maintain a high level of passenger safety
 - Application of fire tests to modern materials
 - Re-evaluation of pass/fail criteria
 - Introduction of new safety threats with new materials
 - Develop new standards or test methods to address these issues
- Composite materials (carbon fiber-epoxy) are being used in places where aluminum was traditionally used
 - Fuselage skin
 - Structural members stringers and formers
 - Seat frames
 - Fuel tanks
- There is a need to evaluate the fire properties of these materials to ensure there is not a decreased level of safety

Composite Fuselage

- There is a need to evaluate the fire properties of a composite fuselage
 - Burnthrough
 - Toxicity
 - In-flight burnthrough
 - Flame propagation
- This objective of this study is to determine whether a composite fuselage will pose a flame propagation hazard
 - Identify potential scenarios where a threat may be present
 - Evaluate threat with full or intermediate scale test
 - Analyze results to determine if there is an increased risk
 - Use full/intermediate scale test results to develop a lab-scale test for future certification purposes

Evaluation of Flame Propagation Risk

- An intermediate scale test was performed using the foam block fire source
- Different configurations of the fire source, thermal acoustic insulation, and composite panel were attempted
- Test results indicated that the material being evaluated did not present a flame propagation hazard
- Other composites or composites of varying thicknesses may pose a threat

Development of Lab-Scale Test

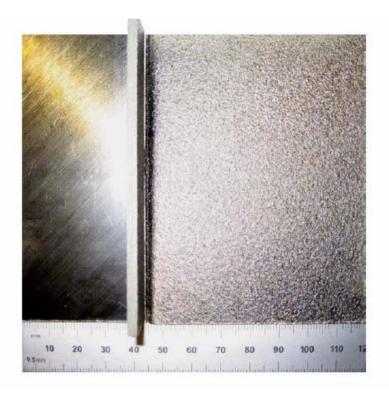
Use the results from previous intermediate scale test as a baseline for a "pass"

- The intermediate scale test results were used to certify that specific material for use in aircraft
- The intermediate scale test will not suffice for certification, however, as it is a large test and takes time and money to perform
- Certification tests must be performed when varying the material (different epoxies, thicknesses, etc.)
- The lab scale test must provide the same discretion as the intermediate scale test, but be more efficient to perform

Radiant Panel Test Apparatus

- The radiant panel test is very useful for evaluation flame propagation tendencies for materials
- The test is a "surface" test, as radiant heat and the burner impingement are applied to the material surface
- Material thickness and thermal conductivity play a large role in this test
- Test parameters must be adjusted to account for composite materials of varying thicknesses (warm-up time, flame exposure time, radiant heat energy, etc.)
- Task here is to determine if the radiant panel test will be useful for evaluating the flame propagation threat of composite materials

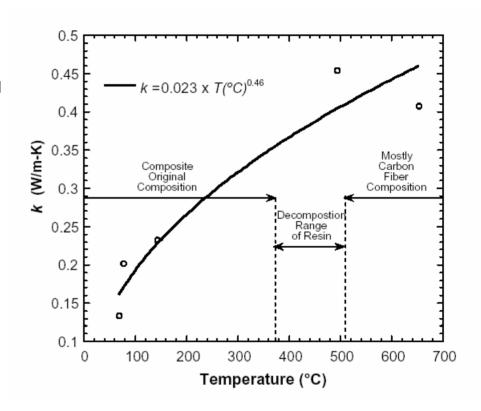
Previous Work on Composites


- FAA Report DOT/FAA/AR-07/57 (Quintiere et al.) entitled "Flammability Properties of Aircraft Carbon-Fiber Structural Composite"
- Investigated a material manufactured by Toray Composites America to meet Boeing Material Specification 8-276
- Key objective was to investigate the heating and burning properties of the material with various methods
 - Cone calorimeter
 - Microscale combustion calorimeter
 - Thermogravimetric analysis
 - Differential scanning calorimeter
 - Flame spread apparatus
 - Thermal conductivity apparatus
 - OSU and smoke chamber

Material Details

Toray Composites, BMS 8-276

- [-45, 0, 45, 90]2s 16 plies
- Material is composed of carbon fibers (7µm dia.) and resin
- 3.2 mm thick (0.125 in.)
- Density = $1530 \text{ kg/m}^3 (95.5 \text{ lb/ft}^3)$
- 60% by volume carbon fibers
- Resin density = 1220 kg/m³ (76 lb/ft³)
- Typical char fraction of resin ~25%

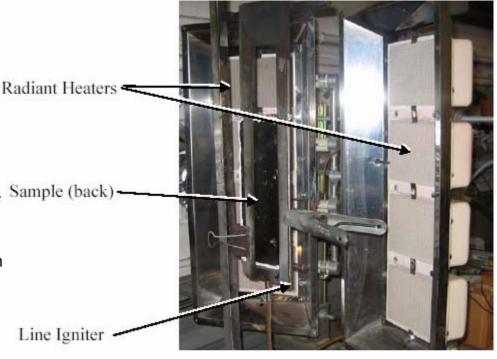

Properties

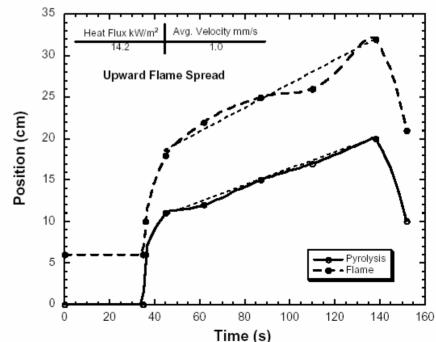
Resin is primary fuel for reactions

- Escapes the material through pores in the matrix
- Heating causes material to swell as internal pressures rise
- Flame jets can protrude from the material due to pressure release
- Properties change as material changes in shape
 - Density decreases
 - Thermal conductivity of matrix decreases
- Both flaming and non-flaming combustion can occur
 - · Resin can produce flaming combustion
 - Char and carbon can smolder on the surface without flame

Thermal conductivity was measured with a home-built apparatus

- Measurements were made over a range of temperatures relevant to combustion
- Heat loss errors were found with the apparatus, possibly up to 20% difference
- More accurate methods are needed
- Despite the errors, the dependency of thermal conductivity on temperature is clear




Federal Aviation

Administration

Flame Spread Experiments

- Critical heat flux was found from cone calorimeter measurements
 - Piloted ignition: 17.5 kW/m² (1.5 BTU/ft²s)
 - Non-piloted ignition: 31.5 kW/m² (2.8 BTU/ft²s)
- Apparatus was developed in the work of Panagiotou and Quintiere
 - Vertically mounted specimen
 - Surface exposed to radiant heat is 6 x 25 cm (2.4" x 9.8")
 - Pre-heat time of 4 min was used to create thermal equilibrium on sample surface (found from critical heat flux for piloted ignition)
 - Flame spread is only a function of heat flux for this pre-heating condition, as flame speed is dependent upon surface temperature
- Key findings
 - Exposed heat flux of 1.25 BTU/ft²s
 - Pilot flame in contact entire test
 - Flame spread of approx 7" over 2 ½ min
 - Pyrolysis spread of approx 12.6" over 2 ½ min

Status

- Work is in the initial phase right now
- Initial work will involve tooling with the radiant panel and different composite material plaques to observe how the material behaves in this test
 - Vary sample size, thicknesses
 - Vary radiant heat and flame exposure times
- Gather samples of different composite materials for intermediate and lab scale tests
- Perform intermediate and lab scale tests, change test parameters such that the intermediate and lab scale results correlate

Questions or Comments?

Contact:

Robert Ochs
DOT/FAA Tech Center
Bldg. 287
Atlantic City Int'l Airport, NJ 08405
(609)-485-4651
robert.ochs@faa.gov