Analysis and Design of the Federal Aviation Administration Fire Test Burner

Particle Image Velocimetry Applied to Fire Safety Research

Presented to: International Aircraft Materials Fire Test Working Group – Niagara Falls, NY

By: Robert Ian Ochs

Date: Tuesday, June 17, 2008
Motivation

- The FAA utilizes a modified oil burner to simulate the effects of a post-crash fuel fire on an aircraft fuselage and interior components
 - The specified burner is a typical home heating oil burner
 - Burner uses JP8 or Jet A jet fuel
- Burner flame characteristics scaled directly from measurements made from full scale pool fire testing
 - Heat flux
 - Temperature
 - Material burn-through times
- The burner is used to measure the fire worthiness of aircraft materials
 - Seats, thermal-acoustic insulation, and cargo liners
Objectives

• **Identify key parameters**
 – Burner operation is known to be dependent upon many factors
 – All relevant factors must be identified and ranked in order of their impact on burner performance
 • Fuel spray
 • Air flow
 • Burner geometry
 • External effects
 • etc, etc, etc…

• **Improve design**
 – Burner is no longer manufactured or available for purchase
 – An equivalent burner must be made available to industry for certifying materials and designs
 – The overall performance, repeatability, and reproducibility of the burner should be improved
 – The burner should be specified such that it can be easily manufactured from readily available materials
 – Optimization of the burner by manipulating the key parameters to provide for an overall better burner design
Methodology

• Utilize flow measurement techniques to study the operation of the burner and assess each component or parameter

• Selection of a technique:
 – Hot Wire Anemometry
 – Laser Doppler Anemometry
 – Particle Image Velocimetry

• PIV was chosen as the most robust method for this study
 – Instantaneous, non-intrusive, planar velocity measurements in 2-D with capabilities for 3-D
 – Hot and cold flows (reacting and non-reacting)
 – Capabilities for particle sizing (spray characterization)
Particle Image Velocimetry

- Particle Image Velocimetry (PIV) is a whole-flow-field visualization technique that provides instantaneous velocity vector measurements in a cross-section of a flow.

\[I_1 \]
\[\Delta t \]
\[I_2 \]

\[v = \frac{\Delta y}{\Delta t} \]

\[u = \frac{\Delta x}{\Delta t} \]
PIV Methodology

- **PIV relies on laser light scattered by particles following a flow**
 - Any particle that follows the flow satisfactorily and scatters enough light to be captured by the camera can be used (particles ~ 5-100 µm)
 - Particle density is critical to achieving a good measurement – anywhere from 10-25 particles per interrogation area window is satisfactory
 - Some flows require seeding to be entrained in the flow (air) while other flows require no seeding (sprays)

- **Resolution and range dictated by particle velocity**
 - Within an interrogation window, particles should move a distance of approx 25% of the window length
 - If a particle moves too far, it will leave the interrogation window and correlation will be lost
 - Pulse width must be timed as to “freeze” the flow
 - Narrow pulse width leads to lack of scattered light
 - Wide pulse width leads to streaking of particles
 - All of these parameters must be optimized to obtain a good measurement
PIV for Fire Safety

- Material fire test methods dependent upon accuracy of test methods
 - Fire test methods involve burners
 - Burners are driven by fluid-thermal processes
 - Test results are completely dependent upon these processes
 - Insight into the fundamental burner parameters will lead to optimization of these parameters
 - Optimization leads to increased level of accuracy and increased confidence in the burner’s repeatability and reproducibility
 - With modern materials processing technology and increased levels of industrial quality control, a more clearly defined level of failure is desired so that manufacturers can design to a specific level of safety
 - Analysis of post-crash fuel fires
 - Visualization of the flow field created by a pool fire
 - Analysis of flame impingement on a fuselage
- Other uses
 - Visualization of fluid flow within an enclosure
 - Smoke spread from a fire in a cargo compartment or cabin
 - Extinguishment agent propagation for fire suppression
 - Nitrogen dispersion in a partitioned fuel tank or in cabin
 - Sprays
 - Water mist
 - Extinguishment agent sprays
Fire Safety’s PIV Laboratory

- **Dantec Dynamics 2D PIV system**
 - FlowSense 2M camera
 - SOLO PIV 120XT laser
 - PC with Dynamic Studio software for analyzing PIV images

- **Current status**
 - Laboratory is on-line

- **Planned activities**
 - Analysis of oil burner
 - Nozzle spray
 - Identify key features of nozzle flow
 - Volume mapping of a nozzle spray, identify symmetry or asymmetry
 - Compare nozzles of same type and of different type
 - Determine optimal nozzle type, manufacturer, or seek to develop a new nozzle
 - Air flow
 - Visualization of the burner exit flow field in different planes
 - Identify the parameters that lead to a more uniform flow field
 - Combined air and fuel flow
 - Determine optimal setting for air-fuel droplet mixing
 - Analysis of flame
 - Determine if flame is seeded with enough soot particles for good PIV measurements
 - Measure flame velocity field and determine if optimal burner settings lead to optimal flame
PIV System Validation

- **Validation measurements must be performed initially**
 - Simple, widely studied experiments
 - Results obtained will be compared to pre-existing published data

- **Jet**
 - Non-reacting flow
 - Reacting flow

- **Jet is similar to a Bunsen burner**
 - Bunsen burner is also an FAA fire test method
 - Results will be useful for system validation and for FAA knowledge
Acquired Data – Fuel Nozzle

- An apparatus was constructed to hold an oil burner nozzle vertically while spraying down.
- Water is used initially as it is easier to work with than jet fuel.
- A pressurized tank was filled with water and compressed air to provide pressure.
- A catch pan was made to collect all water.
- A flat black backdrop was made of sheet metal to absorb stray laser light and provide a black background for easy visualization.
Acquired Data – Burner Air Flow
Burner Air Flow
Future Work

- Refinement of PIV skills
- Create test matrix
- Perform measurements
- Analyze data
- Use knowledge to determine critical burner parameters
- Optimize burner parameters to provide more accurate results