Introduction

- The FAA has utilized various forms of a modified home heating oil burner for aircraft material and system fire testing
 - The flame produced by this type of burner is used to simulate the effects of a severe fire in a controlled laboratory-scale test

- As aircraft fire safety evolved over the past 50 years, more test methods were developed that employed the oil burner as the test apparatus
 - Powerplant components and firewalls
 - Cargo compartment liners
 - Seat cushions
 - Thermal acoustic insulation

- At the same time, the oil burners specified in the regulations went out of production and were no longer obtainable
 - Newer oil burners were specified and considered equivalent if the required heat flux and temperature could be achieved
Evolution

Powerplant Components (1950’s)
- Multiple acceptable burners
- Various testing configurations
- Various test materials
 - Metallic components, firewalls, hoses, etc
- Requirements
 - 2000°F, 9.3 BTU/ft²s

Cargo Liner (1984)
- Multiple acceptable burners
- Single testing configuration
- Single test material
 - Thin, flat fire barriers
- Requirements
 - 1700 ± 100°F, 8.0 ±0.5 BTU/ft²s
 - Exit air velocity

Seat Cushion (1984)
- Multiple acceptable burners
- Single testing configuration
- Single test material
 - Thick, soft cushions
- Requirements
 - 1900 ± 100°F, 10.5 ±0.5 BTU/ft²s

Thermal Acoustic Insulation (2008)
- Single acceptable burner
- Single testing configuration
- Single test material
 - Thin, flexible fire barriers
- Requirements
 - 1900 ± 100°F, 16.0 ±0.5 BTU/ft²s
 - Inlet air velocity
Operating Principles

- Electric motor connected to a blower wheel accelerates air from intake port down the draft tube.
- Internal components force swirling motion on air to enhance mixing.
- Fuel nozzle produces conical fuel spray pattern.
- Igniters provide spark for ignition of fuel/air mixture.
- Electric motor provides shaft power to mechanical fuel pump to pressurize fuel.
Internal Components

- Stator and turbulator cause air flow to swirl in opposite directions, causing shearing and mixing of fuel droplets with air

- Position of these components has been found to have an impact on burner performance

- Some test methods have specific settings for these components

- Spray nozzle uniformity has been found to be an issue, nozzles can be rotated to get more uniform flame temperatures
Flame Temperature Measurement

- **K-type thermocouples are used to measure flame temperature**
 - A thermocouple “rake” is made to measure time-averaged temperature at 7 locations
 - Position of rake in relation to burner cone exit plane depends on test method

- **Flame temperature requirements vary for each test method**
 - Seats: 1800°F avg
 - Cargo Liners: 1600°F avg
 - T/A Insulation: 1900°F avg
Flame Heat Flux Measurement

- A Gardon Gauge is used to measure the flame heat flux
 - 0-15 BTU/ft²s range
 - Water cooled
- Gauge is mounted in a ceramic insulating block
- Position of center of gauge relative to cone exit plane depends on test method
- Heat flux value depends on test method
 - Seats: 10 BTU/ft²s
 - Cargo Liners: 7.5 BTU/ft²s
 - T/A Insulation: 16 BTU/ft²s
Burner Operation

• Each test method has specific burner settings
 – Air flow rate
 – Fuel flow rate

• Check with test method description to determine proper burner operational parameters
 – Fire test handbook:
 • http://www.fire.tc.faa.gov/handbook.stm
 – Chapter 7: Seat Cushion Flammability
 – Chapter 8: Cargo Liner Burnthrough
 – Chapter 24: Insulation Burnthrough
 • Descriptions of specific apparatus, burner orientation, test specimen holders, test calibration and procedure
Lessons Learned Over the Years

- Not all burners are created equal
- Configuration of burner components can drastically alter flame
- Burner air flow can have a significant effect on test results, especially for lighter weight materials
- It’s an oil burner, not precision lab equipment!
Genesis of the Next Generation Fire Test Burner

- During development and implementation of the Thermal Acoustic Insulation Burnthrough Rule, it was discovered that the Park DPL 3400 was no longer in production

- Options
 - Find another commercial off the shelf oil burner
 - Develop a new burner that will not suffer the same fate
Objectives

• Design a fire test burner that can be constructed in-house with easily obtainable components
 – Simple design
 – Simple operation
 – Simple maintenance

• **Burner output must be comparable to the Park DPL 3400**

• Burner should achieve a higher level of repeatability and reproducibility

• Burner should be versatile and easily adaptable to any of the fire tests calling for a “modified gun-type burner”
NexGen Drawings

- Drawings are available online at
Burner Control

Air Flow

Fuel Flow

Regulated and conditioned air and fuel to burner

\[\dot{m} = 0.89 \times P_i + 12.43 \]
Air & Fuel Measurement

- **Air**
 - Flow controlled by pressure regulator and sonic choke
 - Must check regulator output pressure
 - Temperature monitored by thermocouple

- **Fuel**
 - Flow controlled by pressure of fuel tank
 - Must check pressure at back of burner
 - Temperature monitored by thermocouple
 - Fuel volume flow rate is measured with a graduated cylinder and a stopwatch to obtain mL/min
Thermal/Acoustic Insulation Burnthrough
14 CFR 25.856(b)

Cargo Liner Burnthrough
14 CFR 25.855

Seat Cushion Flammability
14 CFR 25.853
NexGen Burner Calibration

• For the NexGen burner, the heat flux measurement has been removed from the calibration procedure
 – Heat flux transducers measure instantaneous heat flux at a very small point in the flame
 – Specifically, Gardon gauges were designed and are intended for measuring intense thermal radiation only
 • Use in an intense, mixed-mode heat transfer environment introduces significant measurement uncertainty
 – Since all inlet parameters and burner dimensions are fixed, no adjustments can be made to achieve a specified heat flux

• Flame temperature is measured and used to determine proper burner output
 – 1/8” S.S. sheathed ceramic packed K-type thermocouples

• Ultimate test of similarity between Park DPL 3400 and NexGen was comparative burnthrough and seat cushion testing
Fire Test Burner - Summary

• The FAA fire test burners are used for testing materials to a severe fire threat
• Different types of oil burners may be found in laboratories depending on test being run
• Be sure to check Fire Test Handbook and AC material for proper burner configurations
FAA Fire Test Burner Test Methods

FAA Fire Safety Overview
February 7 2012 – Singapore
Robert I. Ochs, FAA Fire Safety, ANG-E212
FAA Fire Test Handbook

• Contains all FAA Fire test methods
 – Information in handbook is constantly updated
 – Handbook test methods are preferred over what is written in rule

• Chapters that use oil burner:
 – 7: Seat Cushions
 – 8: Cargo Liners
 – 24: T/A Insulation
• This test method evaluates the burn resistance and weight loss characteristics of aircraft seat cushions when exposed to a high-intensity open flame to show compliance to the requirements of FAR 25.853.

• Test Parameters:
 – Burn Length
 – % Mass Loss
Apparatus

Seat Frame
Back Cushion
Bottom Cushion

2.0 GPH Burner
Scale
Calibration

- **Flame Temperature**
 - Seven K-type, metal sheathed, ceramic insulated thermocouples are placed in a rake, 1" apart and 4" from the burner cone exit plane.
 - After a 2 minute warmup period, TC rake is placed in flame and soaked for 1 minute.
 - A 30-sec average is taken for each thermocouple, and the average must be greater than 1750°F on 2 TC’s and 1800°F on the remaining 5 TC’s.

- **Flame Heat Flux**
 - A Gardon gauge type heat flux sensor is used to measure heat flux.
 - After a 2 minute warmup period, the gauge is placed in flame and soaked for 1 minute.
 - A 30-sec average is taken of the heat flux, and a minimum average value of 10 BTU/ft²s must be achieved.
Test Specimens

- A sample set consists of
 - one seat bottom (horizontal)
 - 18” x 20” x 4”
 - one seat back (vertical)
 - 18” x 25” x 2”
- A minimum of 3 sample sets will be tested
- Each specimen will be constructed of the principal components and assembly of the production seat cushion
 - Foam core
 - Flotation material
 - Fire block material
 - Dress covering
 - Seams
- Weakest point of cushion will be exposed directly to burner flame
- Specimens will be conditioned for a minimum of 24 hours before testing
Test Procedure

- Record weight of each component (back and bottom cushion) to the nearest 0.02 pound.
- Align seat frame with cushion according to Chapter 7
- Position seat away from burner flame, fire burner for 2 minutes to warm up
- Position the seat in front of burner flame at 2 minutes and expose for an additional 2 minutes, then turn off the burner
- The test is over when the seat cushion has self extinguished OR after 5 minutes from burner shut-off
- Record the final weight at test termination and extinguish gently if necessary
- Measure burn lengths on top, bottom, back and front of each component
- A sample set of 3 tests will be run for each cushion configuration
Test Criteria

• The % mass loss is calculated for each test

\[
\left(\frac{m_{\text{initial}} - m_{\text{final}}}{m_{\text{initial}}} \right) \times 100
\]

• The average % of the 3 tests run can not exceed 10% and 2 of the 3 tests must not exceed 10%

• The average burn length may not exceed 17 inches in any direction, and 2 out of the 3 samples tested must not exceed 17 inches
Advisory Material: Seat Cushion Test

- **AC 25.853-1 - Flammability Requirements for Aircraft Seat Cushions**

- **Gives advice on test conduct, sample preparation, burner calibration, etc.**
Chapter 8 – Cargo Liner Burnthrough

• This test method evaluates the flame penetration resistance capabilities of aircraft cargo compartment lining materials utilizing a high-intensity open flame to show compliance to the requirements of FAR 25.855

• Test Parameters:
 – Time to Burnthrough
 – Time to Backside Temperature >400°F
Apparatus

Ceiling Test Sample

Sample Holder

Sidewall Test Sample

2.0 GPH Burner

FAA Fire Test Burner Apparatus
FAA Fire Safety Certification Test Overview
Calibration

- **Flame Temperature**
 - Seven K-type, metal sheathed, ceramic insulated thermocouples are placed in a rake, 1” apart and 4” from the burner cone exit plane
 - After a 2 minute warmup period, TC rake is placed in flame and soaked for 1 minute
 - A 30-sec average is taken for each thermocouple, and the average must be greater than 1600°F

- **Flame Heat Flux**
 - A Gardon gauge type heat flux sensor is used to measure heat flux
 - After a 2 minute warmup period, the gauge is placed in flame and soaked for 1 minute
 - A 30-sec average is taken of the heat flux, and a minimum average value of 7.5 BTU/ft²s must be achieved
Test Specimens

- Each cargo liner panel type and design configuration is tested
 - Design features such as corners, joints, seams, lamp assemblies, pressure relief valves, temperature sensors, etc., that may affect the capability of the cargo compartment to safely contain a fire

- A specimen consists of a ceiling panel and a sidewall panel

- A minimum of 3 specimens or specimen sets for each panel type or design configuration will be tested

- The specimens will measure 16” by 24”

- The specimens will be conditioned for at least 24 hours prior to testing

Figure 8-2. Cargo Liner Test Specimen Frame
Procedure

• Mount the ceiling and sidewall specimens into the test frame and secure in place with retaining frame

• Move the test frame away from the burner, fire the burner for 2 minutes to warm up

• After 2 minutes, position the test frame over the burner and expose the specimens for 5 minutes OR until flame penetration occurs

• Note the time to specimen burn-through OR time to backside temperature exceed 400°F
Test Criteria

• None of the specimens can have burnthrough in less than 5 minutes

• None of the specimens can have a backside temperature over 400°F in the 5 minute period

• Specimens that pass the ceiling orientation can be used for the sidewall without further test
Chapter 15 – Cargo Liner Repairs

- This test method gives certification test procedures for repair of damaged cargo liners which would include, but not be limited to, ceiling and sidewall liners, pressurized cylinder cover liners, fabric liners, and compartment separation liners. Repairs should not be made to areas of the cargo liner that are designed for blowout in case of decompression.

Figure 15-2. Eight-by Eight-Inch Patch Over Standard Damage
Chapter 24 – Insulation Burnthrough

• This test method evaluates the burnthrough resistance characteristics of aircraft thermal/acoustic insulation materials when exposed to a high intensity open flame.

• Test Parameters
 – Time to Burnthrough
 – Time to Backside Heat Flux >2.0 BTU/ft²s
Apparatus
Calibration

- **Flame Temperature**
 - Seven K-type, metal sheathed, ceramic insulated thermocouples are placed in a rake, 1” apart and 4” from the burner cone exit plane.
 - After a 2 minute warmup period, TC rake is placed in flame and soaked for 1 minute.
 - A 30-sec average is taken for each thermocouple, and the average must be 1900°F +/- 100°F (1800°F-2000°F).

- **Flame Heat Flux**
 - A Gardon gauge type heat flux sensor is used to measure heat flux.
 - After a 2 minute warmup period, the gauge is placed in flame and soaked for 1 minute.
 - A 30-sec average is taken of the heat flux, and an average value of 16 BTU/ft²s +/- 0.8 BTU/ft²s must be achieved.
Test Specimens

• A minimum of 3 specimen sets of the same configuration will be tested
 – A specimen set consists of 2 insulation blankets (left and right)

• The samples will measure 32” wide by 36” long

• Each specimen is constructed from the principal components for a production blanket
 – Insulation
 – Fire barrier
 – Moisture barrier film
 – Seams and closures

• The specimens will be conditioned for a minimum of 24 hours before testing
Procedure

• Attach the insulation blankets to the test frame using spring clamps, follow advisory material for attachment methods

• Position test rig away from burner, fire the burner for 2 minutes to warm-up

• At 2 minutes, position the test rig in front of the burner flame, exposing the blankets to the flame

• Expose the specimens to the flame for 4 minutes

• Terminate the test at 4 minutes OR when burn through occurs
Test Criteria

• Each of the two blanket specimens tested must not allow fire or flame penetration in less than 4 minutes

• Each of the two blanket specimens must not allow more than 2.0 BTU/ft²s on the back side (inboard) of the specimens in the 4 minute test period
Advisory Circular – Insulation Burnthrough Test

- AC 25.856-2A

- This AC provides guidance for the test method to determine burnthrough resistance of thermal/acoustic insulation materials installed in transport category airplanes. This guidance applies to airplanes required to comply with § 25.856 and part VII of Appendix F to 14 CFR part 25.

- Describes acceptable attachment methods, overlap, insulation that does not require testing, etc.

- Includes NexGen burner as equivalent to Park burner
AC 25.856-2A

Figure 1. Overlap

Figure 9. Over Frame Blanket Installation

Figure 10. Stringer-Mounted Fastener
Questions?

Contact:
Robert Ochs
DOT/FAA Tech Center
BLDG 287
Atlantic City Int’l Airport
NJ 08405
robert.ochs@faa.gov
1 609 485 4651