Proposed Radiant Heat Panel Test

For the Evaluation of Aircraft Duct Material

STATUS REPORT

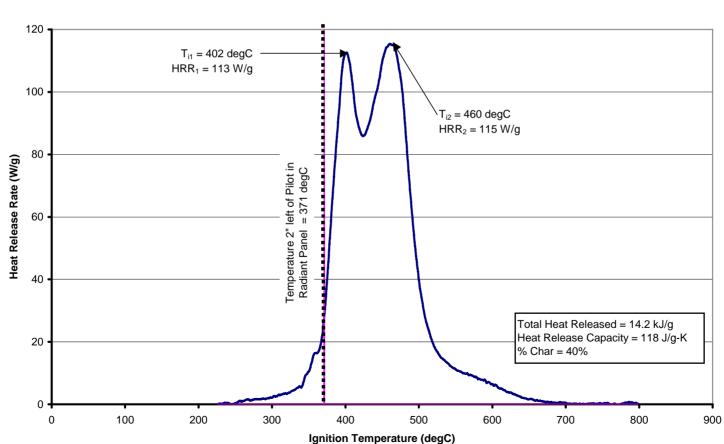
INTERNATIONAL AIRCRAFT MATERIALS FIRE TEST WORKING GROUP ORANGE COUNTY, CALIFORNIA JUNE 2006 MEETING WJH FAA Technical Center John W. Reinhardt Fire Safety Section, AAR-440 Atlantic City Int'l Airport, New Jersey 08405

Outline

PRESENTATION OUTLINE:

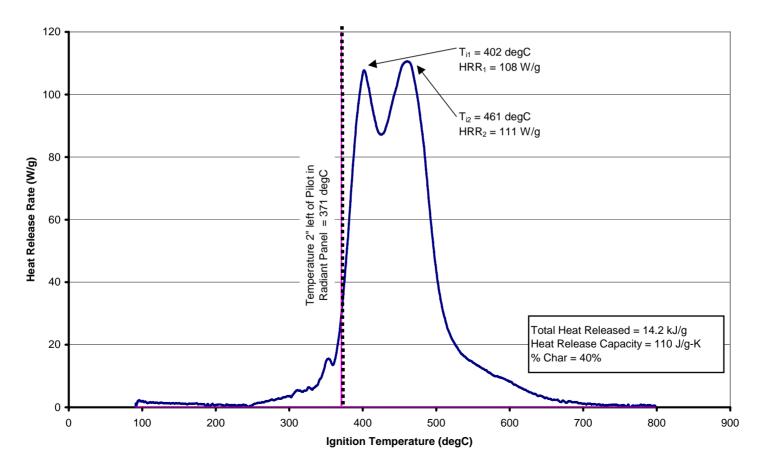
- Last Quarter Tests Results
- Status of the Proposed Radiant Panel Protocol for Ducts
- Final Remarks

- Tested AI, Structural Adhesive (MSCC)
- Tested AJ, Structural Adhesive (MSCC)
- Tested AK, Taped N (RP)
- Tested AL, Taped N (RP)
- Tested AM, fire blocking insulation : film 1, glass insulation, Tape 1 (RP)


- Tested AN, fire blocking insulation: film 1, glass insulation, with hook & loop (RP)
- Tested AO, fire blocking insulation: film 2, glass insulation, Tape 1 (RP)
- Tested AP, fire blocking insulation: film 2,glass insulation, with hook & loop (RP)

- Tested AQ, Thermoplastic (VBB12/60, OSU, RP, Smoke, MSCC)
- Tested AR, Thermoplastic (VBB12/60, OSU, RP, Smoke, MSCC)
- Tested AS, Thermoplastic (VBB12/60, OSU, RP, Smoke, MSCC)
- Tested AT, Thermoplastic (VBB12/60, OSU, RP, Smoke, MSCC)
- Tested AU, Thermoplastic (VBB12/60, OSU, RP, Smoke, MSCC)
- Tested AV, Flexible Tube (RP)

MICRO-SCALE COMBUSTION CALORIMETER TEST 1


Material: Structural Adhesive AI

MICRO-SCALE COMBUSTION CALORIMETER TEST 1

Material: Structural Adhesive AJ

MATERIAL	RPHT FLAME PROPAGATION	FAA ACCEPTANCE CRITERIA			PASS/	COMMENTS
	(cm)	(cm)	(sec)	(sec)	FAIL	
AK	3.5	5.08	60	45	Failed	Taped N
AL	3.2	5.08	60	45	Failed	Taped N
АМ	7.6	5.08	16.3	45	Failed	Film and tape shrunk away exposing fiberglass insulation
AN	1.4	5.08	2.7	45		Hook & Loop. Film shrunk away exposing fiberglass insulation
AO	10.2	5.08	TBD	45	Falled	Adhesive of tape burned
AP	2.9	5.08	2.0	45	Passed	
AQ	2.5	5.08	0	45	Passed	
AR	2.5	5.08	1	45	Passed	
AS	2.5	5.08	0	45	Passed	
AU	2.8	5.08	1	45	Passed	
AV	3.18	5.08	7.67	45	Passed	Helix parallel (critical fire path) to pilot flame
AV	5.72, 4.44, 4.44	5.08	11	45		Helix perpendicular to pilot flame

TESTS	MATERIAL ID							
	AQ	AR	AS	AT	AU			
12-sec Vertical Bunsen Burner								
Burn Length (cm), BL< 20.32 cm:	1.2	0.9	1.7	1.1	1.3			
After Flame Time (sec), AFT < 15 sec:	0.0	0.0	0.0	0.0	0.0			
Drip Flame Time (sec), DFT < 5 sec:	0.0	0.0	0.0	0.0	0.0			
60-sec Vertical Bunsen Burner								
Burn Length (cm), BL< 15 cm:	7.1	5.8	7.6	5.9	6.5			
After Flame Time (sec), AFT < 15 sec:	0.0	0.0	0.0	0.0	0.0			
Drip Flame Time (sec), DFT < 3 sec:	0.0	0.0	0.0	0.0	0.0			
Radiant Panel Test								
Burn Length (cm), BL < 5.08 cm:	2.5	2.5	2.5	N/A	2.8			
After Flame Time (sec), AFT < 45 sec:	0.0	1.0	0.0	N/A	1.0			
OSU Heat Release								
Peak Heat Release (kW/m ²), PHR < 65 kW/m ² :	47.7	51.9	36.8	46.2	34.6			
Total Heat Release (kW*min/m ²), THR < 65 kW*min/m ² :	4.2	1.9	3.5	2.3	4.3			
Smoke								
Smoke Density (D _s), D _s < 200:	1.1	0.0	0.1	0.2	0.3			
Micro-Scale Combustion Calorimeter								
Peak Heat Release (W/g):	122.6	148.6	106.0	175.0	136.5			
Total Heat Release (kJ/g):	9.0	7.7	9.8	9.1	8.0			
Ignition Temperature (degC):	573.1	617.0	584.0	615.4	618.4			

STATUS OF PROPOSED RADIANT PANEL TEST FOR AIRCRAFT DUCTS

As ducting materials are tested (in different scenarios), data collected and analyzed, the proposed radiant panel test protocol will continue to be modified. This document will continue to morph until the FAA is satisfied that the new test protocol is capable of discriminating between fire worthy and a non-fire worthy materials when exposed to the accepted fire threat.

- As of today, the proposed test protocol is as follows:
 - ✓ Pre-heat sample for 1 minute with the 1.5 BTU radiant panel
 - ✓ Impinge pilot flame on specimen for 15 seconds

 \checkmark Acceptance Criteria: fire propagation length < 2", after flame time < 45 seconds

Summary

FINAL REMARKS

- By looking at the MSCC results, there is a high probability that the structural adhesives AI and AJ will perform well when tested in the radiant panel test.
- The tapes 1 & 2 alone could not protect material N when challenged against the new radiant panel test protocol.

During the evaluation of fire blocking covers using the new RP protocol, film 1 shrunk away exposing the blanket, hook & loop and tape. It did not provide a structurally sound protection to the non-fire worthy material (N).

 During the same evaluation, the best fire blocking configuration resulted when film 2 was combined with two layers of blanket, and closed with the hook and loop.

Summary

FINAL REMARKS

 Materials AQ, AR, AS, AT, and AU performed outstandingly when challenged to VBB, OSU, Smoke, RP, and MSCC tests.

• Material AV had two different results when tested at different axis. This material is a flexible duct that has a protruding helix spine in order to maintain its shape. When this spine is perpendicular to the pilot, the pilot flame attaches to the spine and travels through it during the 15-second impingement period; this causes the fire propagation to exceed the 2" threshold. But this does not occur when the spine is parallel to the pilot, so it passes the test. The FAA is examining this case in order to determine a logical solution that is fair and safe at the same time.

