Overview of Park Burner Used in Insulation Burnthrough Resistance Test

Typical Test Burner and Sample Holder

Typical Test Burner and Sample Holder

Development and Refinement of Burnthrough Test Method

Examples of how and why test apparatus was modified over the years

Data Collection Procedure is Critical

Data Collection Procedure is Critical

Intake Airbox Standardization

Purpose: Manufacture standard intake airbox devices for all participating burnthrough test labs to house the Omega HH-30A air velocity meter.

Standardizing the methodology of measuring intake air velocity could minimize the potential for interlab data fluctuations.

Irregular Shape of Park Burner Intake Area

Intake Airbox Mass Production

Aluminum Intake Airbox

Intake Airbox Holding Air Velocity Meter

Standardized Air Intake System

Development and Refinement of Burnthrough Test Method

Configuration of Internal Components

Current Specification for Nozzle Depth

Nozzle Tip Depth vs. Heat Flux

Current Specification for Stator Position

Development and Refinement of Burnthrough Test Method

Impact of Fuel Nozzle Type on Test Results

Discussion with Monarch

Early nozzles inscribed with "F-80" (generic drawing description)

Discussion with Monarch

Late 1980's, change from "F-80" to "MTD-92" (material tolerance description)

Discussion with Monarch

Early 1990's no inscription, but rather a production number (for example "9 7")

Nozzle Rotation Tests

Old Style

New Style

Test #	Nozzle Type	Monarch Letter	Heat Flux	Heat Flux
		Orientation	(Btu/ft2 sec)	Average
1	F-80	3 o'clock	16.56	
2	F-80	3 o'clock	16.62	16.78
3	F-80	3 o'clock	17.16	
4	F-80	6 o'clock	15.52	
5	F-80	6 o'clock	15.88	15.71
6	F-80	6 o'clock	15.74	
7	F-80	9 o'clock	15.08	
8	F-80	9 o'clock	15.55	15.47
9	F-80	9 o'clock	15.79	
10	F-80	12 o'clock	13.37	
11	F-80	12 o'clock	13.51	13.38
12	F-80	12 o'clock	13.26	

Test #	Nozzle Type	Monarch Letter	Heat Flux	Heat Flux
		Orientation	(Btu/ft2 sec)	Average
13	Late Production	3 o'clock	14.17	
14	Late Production	3 o'clock	14.43	14.43
15	Late Production	3 o'clock	14.69	
16	Late Production	6 o'clock	14.29	
17	Late Production	6 o'clock	14.69	14.63
18	Late Production	6 o'clock	14.92	
19	Late Production	9 o'clock	14.80	
20	Late Production	9 o'clock	15.35	15.16
21	Late Production	9 o'clock	15.34	
22	Late Production	12 o'clock	14.77	
23	Late Production	12 o'clock	15.05	15.02
24	Late Production	12 o'clock	15.23	

Nozzle Rotation Testing

Prototype Nozzle Developed by Monarch

Swirl disc copied from original FAA nozzle

Heat Flux Comparison of Nozzles

Nozzle Comparison

6.5 GPH 80° PL "old style" F-80

Nozzle	Std Flowrate @ 100 psi	Fuel Pressure	Adjusted Flowrate	Heat Flux (Btu/ft ² sec)
6.0 80° PL	6.0	107	6.02	15.60
6.5 80° PL	6.5	107	6.52	16.03
6.5 80° PL	6.5	97	6.04	15.26
6.5 80° PL	6.5	97	6.04	15.59

Nozzle	Std Flowrate @ 100 psi	Fuel Pressure	Adjusted Flowrate	Heat Flux (Btu/ft ² sec)
6.0 80° PL	6.0	107	6.02	15.60
6.5 80° PL	6.5	107	6.52	16.03
6.5 80° PL	6.5	97	6.04	15.26
6.5 80° PL	6.5	97	6.04	15.59

Nozzle	Std Flowrate @ 100 psi	Fuel Pressure	Adjusted Flowrate	Heat Flux (Btu/ft ² sec)
6.0 80° PL	6.0	107	6.02	15.60
6.5 80° PL	6.5	107	6.52	16.03
6.5 80° PL	6.5	97	6.04	15.26
6.5 80° PL	6.5	97	6.04	15.59

Nozzle	Std Flowrate @ 100 psi	Fuel Pressure	Adjusted Flowrate	Heat Flux (Btu/ft ² sec)
6.0 80° PL	6.0	107	6.02	15.60
6.5 80° PL	6.5	107	6.52	16.03
6.5 80° PL	6.5	97	6.04	15.26
6.5 80° PL	6.5	97	6.04	15.59

Nozzle	Std Flowrate @ 100 psi	Fuel Pressure	Adjusted Flowrate	Heat Flux (Btu/ft ² sec)
6.0 80° PL	6.0	107	6.02	15.60
6.5 80° PL	6.5	107	6.52	16.03
6.5 80° PL	6.5	97	6.04	15.26
6.5 80° PL	6.5	97	6.04	15.59

1941 1981 1958 1958 1974 1992 1999 Avg 1972

Development and Refinement of Burnthrough Test Method

Impact of Internal Stator Diameter on Test Results

Casting Replicate (3-5% Smaller)

Original H215

Modified Replicate (Same Diameter)

Fiberglass Tape Added to Blade Edge

RTV Sealant Added to Blade Edge

Development and Refinement of Burnthrough Test Method

Impact of Main Housing Type on Test Results

Flanged vs. Socket Type Housing

Different Draft Tubes for Each Housing Type

Objective: To develop a simple modification to the socket burner that would result in equivalent performance to the flanged burner (i.e., reduced exit air velocity while maintaining specified 2150 ft/min intake velocity).

Methodology: Alter the flow of air in the draft tube using various deflectors, discs, and stators in order to reduce the output velocity.

Socket Burner Testing

Socket Burner Testing

Assorted Components Used in Socket Burner

Current Specification for Stator Position (Flanged Burner)

Socket Burner Testing

Distance from Stator Face to Nozzle Tip (Inches)

Reproduction Stator, Modified at Edges of Blades

Reproduction Stator, Modified at Edges of Blades

Socket Burner Testing

Distance from Stator Face to Nozzle Tip (Inches)

Socket Burner Testing

Proper Technique for Mounting Insulation Blankets on Test Frame

Step 1: Install Left Blanket, Squeeze Onto Former

Step 2: Install Right Blanket, Clip To Frame

Step 3: Tuck Blanket Into Corners @ Center

Step 4: Tuck Blanket Into Corners @ Sides, Clip

Desired Blanket Installation on Test Frame

Desired Blanket Installation on Test Frame

Questions?