

Engineering, Test & Technology Boeing Research & Technology

HR 2 Calibration Factor Averaging

Presented by: Yaw Agyei Fire Test Forum – Spring Meeting, April 2021

Contributions from: Mike Burns, Brian Johnson, Martin Spencer, Michael Schall, Christian Thomas, Alex Dunlap, Katy Wrenn, Lindsay Jones

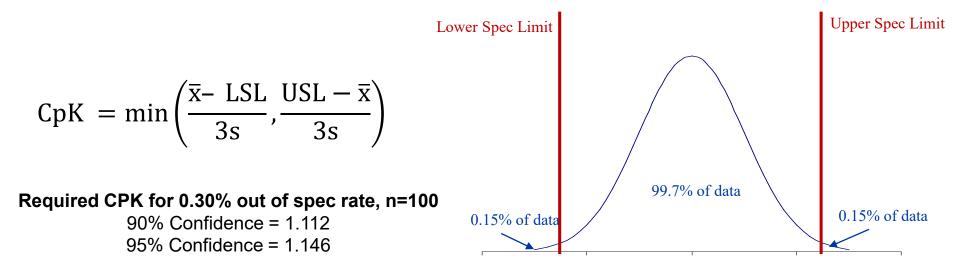
Copyright © 2016 Boeing. All rights reserved.

Agenda

- 1. Operating Response Specification Limits Recap
 - Establishing Specification Limits
 - New HR 2 Unit Validation
 - Daily HR 2 Operations Assessment
- 2. Reducing Calibration Factor Variation Impact on Heat Release Properties
 - Simple Moving Average Method Proposal
 - Simple Moving Average Sensitivity Analysis
- 3. Summary / Q&A

Operating Response Specification Limits Recap

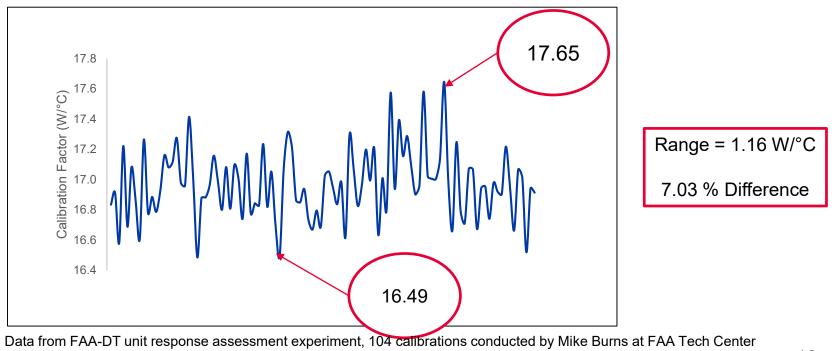
Establish operating response specification limits using TRL 6 Phase 1 unit assessment data - minimum of 5 units


- Minimum of 100 data points from each unit
- 99-95% Tolerance intervals: 95% confidence that 99% of the population will fall within range

Operating Response Specification Limit Recap

New HR 2 Unit Validation

- After installation of new unit, conduct unit assessment to validate new unit.
 - 1. Conduct minimum of 100 methane calibrations
 - 2. Record baseline temperature, thermopile stability temperature, calibration factor
 - 3. Determine mean and standard deviation for each response
 - 4. Compute process capability index (CpK) for each response
 - Defines the ability of the HR 2 unit to produce a response that meets test method specification limits

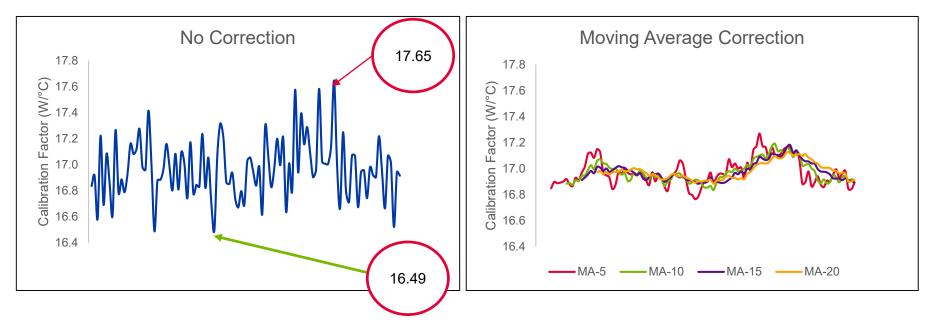


Operating Response Specification Limit Recap

Daily HR 2 Operations Assessment

- Critical operating responses must fall within specification limits for all testing
 - Baseline temperature (°C)
 - Thermopile Stability Temperature (TST, °C)
 - Calibration factor (W/°C)

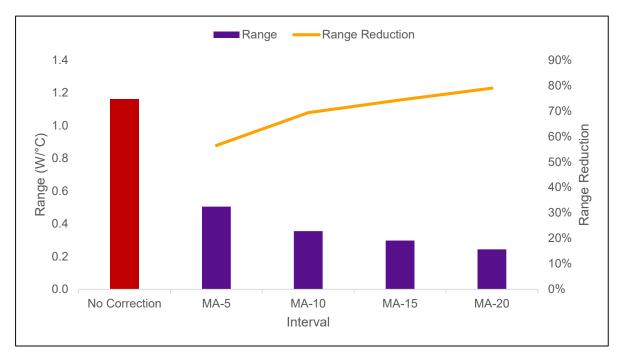
- Calibration Factor (K_h)
 - Proportionality constant, determined by performing the calibration procedure.
 - Correlates the heat released by a specimen when burned to the known heat content of methane.
 - Calibration procedure conducted weekly and after each repair or maintenance of the apparatus that may affect the unit's response.
 - May vary significantly, variations significantly impact heat release properties


Calibration Factor Impact on Heat Release Properties

- Calibration factor directly proportional to HRR
- % change in CF = % change in HRR
- HR 2 TRL 6 Phase 2 Testing Example:
 - FAA-DT unit
 - Schneller specimen
 - Calculated CF on 1st day of testing = 17.28 W/°C

	Min	Actual	Мах
Calibration Factor (W/°C)	16.49	17.28	17.65
% difference	-4.6%	-	2.1%
Peak HR (kW/m²)	44.3	46.4	47.4
2-Min Total (kW-min/m ²)	33.7	35.3	36.1

Mike Burn's proposal


- Use simple moving average to compute applied calibration factor
 - Offers stable calibration factor value over time
 - Calibration factor less prone to whipsawing up and down
 - More representative of instrument's performance over time

Data from FAA-DT unit response assessment experiment, 104 calibrations conducted by Mike Burns at FAA Tech Center

Moving Average Sensitivity Analysis

- Determine most practical moving average interval
- Sets the interval for moving average calculation
- 56% range reduction using moving average interval of 5 best option

Data from FAA-DT unit response assessment experiment, 104 calibrations conducted by Mike Burns at FAA Tech Center

Summary

- 1. Operating Response Specification Limits Recap
 - Established using TRL 6 Phase 1 data from minimum of 5 units
 - New unit validated using CpK analysis
 - Critical responses must fall within specification limits for testing
- 2. Reducing Calibration Factor Impact Variation on Heat Release Properties
 - Adopting moving average, interval of 5, to compute applied calibration factor to reduce calibration factor variation on heat release properties.